首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Yeast Motor Protein, Kar3p, Is Essential for Meiosis I   总被引:2,自引:0,他引:2       下载免费PDF全文
The recognition and alignment of homologous chromosomes early in meiosis is essential for their subsequent segregation at anaphase I; however, the mechanism by which this occurs is unknown. We demonstrate here that, in the absence of the molecular motor, Kar3p, meiotic cells are blocked with prophase monopolar microtubule arrays and incomplete synaptonemal complex (SC) formation. kar3 mutants exhibit very low levels of heteroallelic recombination. kar3 mutants do produce double-strand breaks that act as initiation sites for meiotic recombination in yeast, but at levels severalfold reduced from wild-type. These data are consistent with a meiotic role for Kar3p in the events that culminate in synapsis of homologues.  相似文献   

2.
3.
Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore.  相似文献   

4.
A novel human protein, ASK (activator of S phase kinase), was identified on the basis of its ability to bind to human Cdc7-related kinase (huCdc7). ASK forms an active kinase complex with huCdc7 that is capable of phosphorylating MCM2 protein. ASK appears to be the major activator of huCdc7, since immunodepletion of ASK protein from the extract is accompanied by the loss of huCdc7-dependent kinase activity. Expression of ASK is regulated by growth factor stimulation, and levels oscillate through the cell cycle, reaching a peak during S phase. Concomitantly, the huCdc7-dependent kinase activity significantly increases when cells are in S phase. Furthermore, we have demonstrated that ASK serves an essential function for entry into S phase by showing that microinjection of ASK-specific antibodies into mammalian cells inhibited DNA replication. Our data show that ASK is a novel cyclin-like regulatory subunit of the huCdc7 kinase complex and that it plays a pivotal role in G1/S transition in mammalian cells.  相似文献   

5.
6.
Faithful chromosome segregation during meiosis requires that homologous chromosomes associate and recombine. Chiasmata, the cytological manifestation of recombination, provide the physical link that holds the homologs together as a pair, facilitating their orientation on the spindle at meiosis I. Formation of most crossover (CO) events requires the assistance of a group of proteins collectively known as ZMM. HFM1/Mer3 is in this group of proteins and is required for normal progression of homologous recombination and proper synapsis between homologous chromosomes in a number of model organisms. Our work is the first study in mammals showing the in vivo function of mouse HFM1. Cytological observations suggest that initial steps of recombination are largely normal in a majority of Hfm1−/− spermatocytes. Intermediate and late stages of recombination appear aberrant, as chromosomal localization of MSH4 is altered and formation of MLH1foci is drastically reduced. In agreement, chiasma formation is reduced, and cells arrest with subsequent apoptosis at diakinesis. Our results indicate that deletion of Hfm1 leads to the elimination of a major fraction but not all COs. Formation of chromosome axial elements and homologous pairing is apparently normal, and Hfm1−/− spermatocytes progress to the end of prophase I without apparent developmental delay or apoptosis. However, synapsis is altered with components of the central region of the synaptonemal complex frequently failing to extend the full length of the chromosome axes. We propose that initial steps of recombination are sufficient to support homology recognition, pairing, and initial chromosome synapsis and that HFM1 is required to form normal numbers of COs and to complete synapsis.  相似文献   

7.

Background

The SWR1 complex is important for the deposition of histone variant H2A.Z into chromatin necessary to robustly regulate gene expression during growth and development. In Arabidopsis thaliana, the catalytic subunit of the SWR1-like complex, encoded by PIE1 (PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1), has been shown to function in multiple developmental processes including flowering time pathways and petal number regulation. However, the function of the PIE1 orthologs in monocots remains unknown.

Methodology/Findings

We report the identification of the rice (Oryza sativa) ortholog, OsPIE1. Although OsPIE1 does not exhibit a conserved exon/intron structure as Arabidopsis PIE1, its encoded protein is highly similar to PIE1, sharing 53.9% amino acid sequence identity. OsPIE1 also has a very similar expression pattern as PIE1. Furthermore, transgenic expression of OsPIE1 completely rescued both early flowering and extra petal number phenotypes of the Arabidopsis pie1-2 mutant. However, homozygous T-DNA insertional mutants of OsPIE1 in rice were embryonically lethal, in contrast to the viable mutants in the orthologous genes for yeast, Drosophila and Arabidopsis (Swr1, DOMINO and PIE1, respectively).

Conclusions/Significance

Taken together, our results suggest that OsPIE1 is the rice ortholog of Arabidopsis PIE1 and plays an essential role in rice embryo development.  相似文献   

8.
In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated CENTRAL REGION COMPONENT1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID RECEPTOR-INTERACTING PROTEIN13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13.  相似文献   

9.
The spindle checkpoint ensures proper chromosome segregation by delaying anaphase until all chromosomes are correctly attached to the mitotic spindle. We investigated the role of the fission yeast bub1 gene in spindle checkpoint function and in unperturbed mitoses. We find that bub1 + is essential for the fission yeast spindle checkpoint response to spindle damage and to defects in centromere function. Activation of the checkpoint results in the recruitment of Bub1 to centromeres and a delay in the completion of mitosis. We show that Bub1 also has a crucial role in normal, unperturbed mitoses. Loss of bub1 function causes chromosomes to lag on the anaphase spindle and an increased frequency of chromosome loss. Such genomic instability is even more dramatic in Δbub1 diploids, leading to massive chromosome missegregation events and loss of the diploid state, demonstrating that bub1 + function is essential to maintain correct ploidy through mitosis. As in larger eukaryotes, Bub1 is recruited to kinetochores during the early stages of mitosis. However, unlike its vertebrate counterpart, a pool of Bub1 remains centromere-associated at metaphase and even until telophase. We discuss the possibility of a role for the Bub1 kinase after the metaphase–anaphase transition.  相似文献   

10.
11.
Phototransduction is carried out by a signaling pathway that links photoactivation of visual pigments in retinal photoreceptor cells to a change in their membrane potential. Upon photoactivation, the second messenger of phototransduction, cyclic GMP, is rapidly degraded and must be replenished during the recovery phase of phototransduction by photoreceptor guanylate cyclases (GCs) GC1 (or GC-E) and GC2 (or GC-F) to maintain vision. Here, we present data that address the role of the GC kinase homology (KH) domain in cyclic GMP production by GC1, the major cyclase in photoreceptors. First, experiments were done to test which GC1 residues undergo phosphorylation and whether such phosphorylation affects cyclase activity. Using mass spectrometry, we showed that GC1 residues Ser-530, Ser-532, Ser-533, and Ser-538, located within the KH domain, undergo light- and signal transduction-independent phosphorylation in vivo. Mutations in the putative Mg2+ binding site of the KH domain abolished phosphorylation, indicating that GC1 undergoes autophosphorylation. The dramatically reduced GC activity of these mutants suggests that a functional KH domain is essential for cyclic GMP production. However, evidence is presented that autophosphorylation does not regulate GC1 activity, in contrast to phosphorylation of other members of this cyclase family.  相似文献   

12.
13.
14.
Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3) proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG) protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β), two α-kleisins (RAD21L and REC8) and one STAG protein (STAG3) that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC). From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8) is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis-specific cohesin complexes. Furthermore, our data suggests that STAG3 is required for structural changes of chromosomes that mediate chromosome pairing and synapsis, DNA repair and progression of meiosis.  相似文献   

15.
Liu  Shasha  Zhong  Jun  Ling  Sheng  Liu  Yaqin  Xu  Ya  Yao  Jialing 《Plant Molecular Biology Reporter》2021,39(1):87-97
Plant Molecular Biology Reporter - Pollen tube germination and elongation are important processes for double fertilization in flowering plants. However, little is known about the regulatory...  相似文献   

16.
17.
In nature, plants are challenged by constantly changing light conditions. To reveal the molecular mechanisms behind acclimation to sometimes drastic and frequent changes in light intensity, we grew Arabidopsis thaliana under fluctuating light conditions, in which the low light periods were repeatedly interrupted with high light peaks. Such conditions had only marginal effect on photosystem II but induced damage to photosystem I (PSI), the damage being most severe during the early developmental stages. We showed that PROTON GRADIENT REGULATION5 (PGR5)-dependent regulation of electron transfer and proton motive force is crucial for protection of PSI against photodamage, which occurred particularly during the high light phases of fluctuating light cycles. Contrary to PGR5, the NAD(P)H dehydrogenase complex, which mediates cyclic electron flow around PSI, did not contribute to acclimation of the photosynthetic apparatus, particularly PSI, to rapidly changing light intensities. Likewise, the Arabidopsis pgr5 mutant exhibited a significantly higher mortality rate compared with the wild type under outdoor field conditions. This shows not only that regulation of PSI under natural growth conditions is crucial but also the importance of PGR5 in PSI protection.  相似文献   

18.
19.
MEK kinase 1 (MEKK1) is a 196-kDa protein that, in response to genotoxic agents, was found to undergo phosphorylation-dependent activation. The expression of kinase-inactive MEKK1 inhibited genotoxin-induced apoptosis. Following activation by genotoxins, MEKK1 was cleaved in a caspase-dependent manner into an active 91-kDa kinase fragment. Expression of MEKK1 stimulated DEVD-directed caspase activity and induced apoptosis. MEKK1 is itself a substrate for CPP32 (caspase-3). A mutant MEKK1 that is resistant to caspase cleavage was impaired in its ability to induce apoptosis. These findings demonstrate that MEKK1 contributes to the apoptotic response to genotoxins. The regulation of MEKK1 by genotoxins involves its activation, which may be part of survival pathways, followed by its cleavage, which generates a proapoptotic kinase fragment able to activate caspases. MEKK1 and caspases are predicted to be part of an amplification loop to increase caspase activity during apoptosis.  相似文献   

20.
Replication protein A (RPA), a highly conserved single-stranded DNA-binding protein in eukaryotes, is a stable complex comprising three subunits termed RPA1, RPA2, and RPA3. RPA is required for multiple processes in DNA metabolism such as replication, repair, and homologous recombination in yeast (Saccharomyces cerevisiae) and human. Most eukaryotic organisms, including fungi, insects, and vertebrates, have only a single RPA gene that encodes each RPA subunit. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), however, possess multiple copies of an RPA gene. Rice has three paralogs each of RPA1 and RPA2, and one for RPA3. Previous studies have established their biochemical interactions in vitro and in vivo, but little is known about their exact function in rice. We examined the function of OsRPA1a in rice using a T-DNA insertional mutant. The osrpa1a mutants had a normal phenotype during vegetative growth but were sterile at the reproductive stage. Cytological examination confirmed that no embryo sac formed in female meiocytes and that abnormal chromosomal fragmentation occurred in male meiocytes after anaphase I. Compared with wild type, the osrpa1a mutant showed no visible defects in mitosis and chromosome pairing and synapsis during meiosis. In addition, the osrpa1a mutant was hypersensitive to ultraviolet-C irradiation and the DNA-damaging agents mitomycin C and methyl methanesulfonate. Thus, our data suggest that OsRPA1a plays an essential role in DNA repair but may not participate in, or at least is dispensable for, DNA replication and homologous recombination in rice.In a population of organisms, it is crucial to maintain the integrity of genome among individuals as well as shuffle genetic information at the population level. To maintain such genetic integrity, cells have evolved elaborate mechanisms such as base excision repair (BER; Hegde et al., 2008), nucleotide excision repair (NER; Shuck et al., 2008), homologous recombination (HR; Li and Heyer, 2008) repair, and nonhomologous end joining (Weterings and Chen, 2008) pathways to repair diverse types of DNA damage. To allow for variation, however, organisms utilize meiosis to shuffle genetic material so as to increase genetic diversity in populations and in the species.DNA double-strand break (DSB) repair is particularly important in maintaining the integrity of genome among individuals and shuffling genetic information among population, because DSBs are generated not only in meiotic cells but also from the action of certain endogenous or exogenous DNA-damaging agents and during repair of other kinds of DNA lesions by NER or BER (West et al., 2004; Bleuyard et al., 2006). The past decade has witnessed an explosion in understanding of this complex process by using yeast (Saccharomyces cerevisiae) as a model organism (Aylon and Kupiec, 2004). Cells can repair DSBs by the relatively inaccurate process of rejoining the two broken ends directly (i.e. nonhomologous end joining) or much more accurately by HR (Bleuyard et al., 2006; Wyman and Kanaar, 2006). These two pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type (Shrivastav et al., 2008). According to the current general model for meiotic DSB repair (Bishop and Zickler, 2004; Ma, 2006; San Filippo et al., 2008), when DSBs occur the MRN complex (composed of Mre11, Rad50, and NBS1) resects the DSBs to generate 5′→3′ single-stranded DNA (ssDNA) ends. Subsequently, the replication protein A (RPA) protein complex binds to the ssDNA ends to protect them from attack by endogenous exonucleases; then, in concert with catalysis by Rad52, Rad55, and Rad57, the recombinase Rad51 displaces RPA, resulting in the generation of a Rad51 nucleoprotein filament that in turn catalyzes the search and invasion into the recombination partner with the help of proteins belonging to the RAD52 epistasis group to form a D loop that accompanies DNA synthesis. Thereafter, at least two competing mechanisms may come into play. One is the DSB repair pathway, in which the capture of the second DSB end and additional DNA synthesis result in an intermediate that harbors two Holliday junctions. The subsequent resolution of Holliday junctions results in the formation of crossovers. Alternatively, in the synthesis-dependent strand annealing pathway, the D loop dissociates and the invading single strand with newly synthesized DNA reanneals with the other DSB end, followed by gap-filling DNA synthesis and ligation, forming only noncrossover products (Ma, 2006; San Filippo et al., 2008).RPA is comprised of three subunits of RPA1, 2, and 3, alternatively termed as RPA70, 32, and 14, respectively, according to their apparent Mrs (Wold, 1997; Iftode et al., 1999). RPA is an essential protein in various DNA metabolism pathways such as DNA replication, repair, and HR (Wold, 1997; Iftode et al., 1999). In these pathways, the most basic function of RPA is binding to ssDNA to protect it from exonucleases, and its general roles in DNA metabolism depend on its interactions with other proteins in various pathways (Wold, 1997; Iftode et al., 1999). For example, in human NER pathway, RPA binds to damaged DNA and interacts with xeroderma pigmentosum damage-recognition protein, XPA, in the damage recognition step, and then the endonucleases XPG and ERCC1/XPF are recruited to the RPA-XPA-damaged DNA complex in the excision step (He et al., 1995). Interactions of RPA with those proteins are critical in this process (Wold, 1997; Iftode et al., 1999). A great deal of protein dynamics research has indicated that the interactions between RPA and other DNA-metabolism proteins are choreographed on the ssDNA to recruit the required protein present at the proper time (Fanning et al., 2006).Human, animals, and fungi have single copy for each subunit of RPA (http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi). Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), however, have multiple genes for most RPA subunits (Ishibashi et al., 2006; Shultz et al., 2007). Most of them have not unveiled exact function up to now. To elucidate the molecular basis of meiosis in rice, we performed a large-scale screen for sterile mutants using our T-DNA insertion mutant library (Wu et al., 2003). Previously, we reported the cloning of OsPAIR3, a novel gene required for homologous chromosome pairing and synapsis in rice (Yuan et al., 2009). Here we report the characterization of another sterile mutant with a T-DNA insertion in OsRPA1a. Our results indicate that OsRPA1a is essential for DNA repair but may play redundant roles in DNA replication and recombination in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号