首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The excitability of thenar motoneurons (reflected by F-wave persistence and amplitude) and thenar muscle force were measured during a stimulation protocol (90 s of 18-Hz supramaximal electrical stimulation of the median nerve) designed to induce muscle fatigue (force decline). Data from muscles (n = 15) paralyzed by chronic cervical spinal cord injury were compared with those obtained from control muscles (n = 6). The persistence of F waves in both paralyzed and control muscles increased from approximately 60 to approximately 76% during the first 10 s of the fatigue protocol. Persistence then declined progressively to approximately 33% at 90 s. These changes in F-wave persistence suggest that similar reductions occur in the excitability of the motoneurons to paralyzed and control motor units after sustained antidromic activation. Despite this, significantly larger force declines occurred in the paralyzed muscles of spinal cord-injured subjects (approximately 60%) than in the muscles of control subjects (approximately 15%). These data suggest that the decreases in motoneuron excitability for both the spinal cord-injured and control subjects are a result of activity-dependent changes in motoneuron properties that are independent of fatigue-related processes in the muscles.  相似文献   

2.
Neuromodulators, such as neuropeptides, can regulate and reconfigure neural circuits to alter their output, affecting in this way animal physiology and behavior. The interplay between the activity of neuronal circuits, their modulation by neuropeptides, and the resulting behavior, is still poorly understood. Here, we present a quantitative framework to study the relationships between the temporal pattern of activity of peptidergic neurons and of motoneurons during Drosophila ecdysis behavior, a highly stereotyped motor sequence that is critical for insect growth. We analyzed, in the time and frequency domains, simultaneous intracellular calcium recordings of peptidergic CCAP (crustacean cardioactive peptide) neurons and motoneurons obtained from isolated central nervous systems throughout fictive ecdysis behavior induced ex vivo by Ecdysis triggering hormone. We found that the activity of both neuronal populations is tightly coupled in a cross-frequency manner, suggesting that CCAP neurons modulate the frequency of motoneuron firing. To explore this idea further, we used a probabilistic logistic model to show that calcium dynamics in CCAP neurons can predict the oscillation of motoneurons, both in a simple model and in a conductance-based model capable of simulating many features of the observed neural dynamics. Finally, we developed an algorithm to quantify the motor behavior observed in videos of pupal ecdysis, and compared their features to the patterns of neuronal calcium activity recorded ex vivo. We found that the motor activity of the intact animal is more regular than the motoneuronal activity recorded from ex vivo preparations during fictive ecdysis behavior; the analysis of the patterns of movement also allowed us to identify a new post-ecdysis phase.  相似文献   

3.
Xenopus is an excellent tetrapod model for studying normal and pathological motoneuron ontogeny due to its developmental morpho-physiological advantages. In mammals, the urotensin II-related peptide (UTS2B) gene is primarily expressed in motoneurons of the brainstem and the spinal cord. Here, we show that this expression pattern was conserved in Xenopus and established during the early embryonic development, starting at the early tailbud stage. In late tadpole stage, uts2b mRNA was detected both in the hindbrain and in the spinal cord. Spinal uts2b+ cells were identified as axial motoneurons. In adult, however, the uts2b expression was only detected in the hindbrain. We assessed the ability of the uts2b promoter to drive the expression of a fluorescent reporter in motoneurons by recombineering a green fluorescent protein (GFP) into a bacterial artificial chromosome (BAC) clone containing the entire X. tropicalis uts2b locus. After injection of this construction in one-cell stage embryos, a transient GFP expression was observed in the spinal cord of about a quarter of the resulting animals from the early tailbud stage and up to juveniles. The GFP expression pattern was globally consistent with that of the endogenous uts2b in the spinal cord but no fluorescence was observed in the brainstem. A combination of histological and electrophysiological approaches was employed to further characterize the GFP+ cells in the larvae. More than 98% of the GFP+ cells expressed choline acetyltransferase, while their projections were co-localized with α-bungarotoxin labeling. When tail myotomes were injected with rhodamine dextran amine crystals, numerous double-stained GFP+ cells were observed. In addition, intracellular electrophysiological recordings of GFP+ neurons revealed locomotion-related rhythmic discharge patterns during fictive swimming. Taken together our results provide evidence that uts2b is an appropriate driver to express reporter genes in larval motoneurons of the Xenopus spinal cord.  相似文献   

4.
A series of in vivo and in vitro experiments were conducted to determine the influence of prenatally administered ethanol on several aspects of the developing chick embryo spinal cord motor system. Specifically, we examined: (1) the effect of chronic ethanol administration during the natural cell death period on spinal cord motoneuron numbers; (2) the influence of ethanol on ongoing embryonic motility; (3) the effect of ethanol exposure on neurotrophic activity in motoneuron target tissue (limbbud); and (4) the responsiveness of cultured spinal cord neurons to ethanol, and the potential of target-derived neurotrophic factors to ameliorate ethanol neurotoxicity. These studies revealed the following: Chronic prenatal ethanol exposure reduces the number of motoneurons present in the lateral motor column after the cell death period [embryonic day 12 (E12)]. Ethanol tends to inhibit embryonic motility, particularly during the later stages viewed (E9-E11). Chronic ethanol exposure reduces the neurotrophic activity contained in target muscle tissue. Such diminished support could contribute to the observed motoneuron loss. Direct exposure of spinal cord neurons to ethanol decreases neuronal survival and process outgrowth in a dose-dependent manner, but the addition of target muscle extract to ethanol-containing cultures can ameliorate this ethanol neurotoxicity. These studies demonstrate ethanol toxicity in a population not previously viewed in this regard and suggest a mechanism that may be related to this cell loss (i.e., decreased neurotrophic support). © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.  相似文献   

6.
Pro-inflammatory cytokines released from activated microglia may be responsible for neuronal damage and resulting motor deficits associated with CNS disorders such as spinal cord injury, Parkinson’s disease, and multiple sclerosis. Estrogen (17β-estradiol) is capable of ameliorating motoneuron death following spinal cord injury, but has a number of deleterious side effects. Genistein (GEN), an estrogen receptor beta agonist and potent antioxidant, may represent an alternative to estrogen in treating neurodegenerative disorders. However, little is known about the neuroprotective effects of GEN. We therefore tested whether GEN would prevent apoptosis in cultured motoneurons following exposure to pro-inflammatory cytokines released from IFN-γ activated microglia. Exposure of ventral spinal cord 4.1 motoneurons to microglial cytokine supernatant in vitro caused significant apoptosis and reduced mitochondrial membrane potential. An increase in reactive oxygen species, intracellular Ca2+, calpain, caspases, cytochrome c, and the bax:bcl-2 ratio were also noted. GEN treatment reversed apoptotic death and cellular changes following cytokine exposure and was associated with increased expression of estrogen receptor β suggesting that GEN may promote neuroprotection via receptor-mediated pathways. The addition of ICI 182, 780, an estrogen receptor antagonist following GEN treatment attenuated neuroprotection, suggesting that GEN may act mainly via estrogen receptor β to protect VSC4.1 motoneurons. We conclude that GEN protects cultured ventral spinal cord 4.1 cells from inflammatory insult and thus may represent a potential beneficial therapy in the treatment of neurodegenerative disorders.  相似文献   

7.
Neural maps are emergent, highly ordered structures that are essential for organizing and presenting synaptic information. Within the embryonic nervous system of Drosophila motoneuron dendrites are organized topographically as a myotopic map that reflects their pattern of innervation in the muscle field. Here we reveal that this fundamental organizational principle exists in adult Drosophila, where the dendrites of leg motoneurons also generate a myotopic map. A single postembryonic neuroblast sequentially generates different leg motoneuron subtypes, starting with those innervating proximal targets and medial neuropil regions and producing progeny that innervate distal muscle targets and lateral neuropil later in the lineage. Thus the cellular distinctions in peripheral targets and central dendritic domains, which make up the myotopic map, are linked to the birth-order of these motoneurons. Our developmental analysis of dendrite growth reveals that this myotopic map is generated by targeting. We demonstrate that the medio-lateral positioning of motoneuron dendrites in the leg neuropil is controlled by the midline signalling systems Slit-Robo and Netrin-Fra. These results reveal that dendritic targeting plays a major role in the formation of myotopic maps and suggests that the coordinate spatial control of both pre- and postsynaptic elements by global neuropilar signals may be an important mechanism for establishing the specificity of synaptic connections.  相似文献   

8.
Henneman's size principle relates the input and output properties of motoneurons and their muscle fibers to size and is the basis for size-ordered activation or recruitment of motor units during movement. After nerve injury and surgical repair, the relationship between motoneuron size and the number and size of the muscle fibers that the motoneuron reinnervates is initially lost but returns with time, irrespective of whether the muscles are self- or cross-reinnervated by the regenerated axons. Although the return of the size relationships was initially attributed to the recovery of the cross-sectional area of the reinnervated muscle fibers and their force per fiber, direct enumeration of the innervation ratio and the number of muscle fibers per motoneuron demonstrated that a size-dependent branching of axons accounts for the size relationships in normal muscle, as suggested by Henneman and his colleagues. This same size-dependent branching accounts for the rematching of motoneuron size and muscle unit size in reinnervated muscles. Experiments were carried out to determine whether the daily amount of neuromuscular activation of motor units accounts for the size-dependent organization and reorganization of motor unit properties. The normal size-dependent matching of motoneurons and their muscle units with respect to the numbers of muscle fibers per motoneuron was unaltered by synchronous activation of all of the motor units with the same daily activity. Hence, the restored size relationships and rematching of motoneuron and muscle unit properties after nerve injuries and muscle reinnervation sustain the normal gradation of muscle force during movement by size-ordered recruitment of motor units and the process of rate coding of action potentials. Dynamic modulation of size of muscle fibers and their contractile speed and endurance by neuromuscular activity allows for neuromuscular adaptation in the context of the sustained organization of the neuromuscular system according to the size principle.  相似文献   

9.
AMPA receptors lacking the GluA2 subunit allow a significant influx of Ca2+ ions. Although Ca2+-permeable AMPA receptors are a familiar feature at early stages of development, the functional significance of these receptors during the maturation of the nervous system remains to be established. Chicken lumbar motoneurons express Ca2+-permeable AMPA receptors at E6 but the Ca2+ permeability of AMPA receptors decreases ∼3-fold by E11. Considering that activity-dependent changes in intracellular Ca2+ regulates dendritic outgrowth, in this study we investigated whether downregulation of GluA2 expression during a critical period of development alters the dendritic arborization of spinal motoneurons in ovo. We use an avian replication-competent retroviral vector RCASBP (B) carrying the marker red fluorescent protein (RFP) and a GluA2 RNAi construct to downregulate GluA2 expression. Chicken embryos were infected at E2 with one of the following constructs: RCASBP(B)-RFP, RCASBP(B)-RFP-scrambled RNAi, or RCASBP(B)-RFP-GluA2 RNAi. Infection of chicken embryos at E2 resulted in widespread expression of RFP throughout the spinal cord with ≥60% of Islet1/2-positive motoneurons infected, resulting in a significant reduction in GluA2 protein expression. Downregulation of GluA2 expression had no effect on the dendritic arborization of E6 motoneurons. However, downregulation of GluA2 expression caused a significant reduction in the dendritic arborization of E11 motoneurons. Neither motoneuron survival nor maturation of network activity was affected by changes in GluA2 expression. These findings demonstrate that increased GluA2 expression and changes in the Ca2+ permeability of AMPA receptors regulate the dendritic arborization of spinal cord motoneurons during a critical period of development.  相似文献   

10.
Reduced levels of the SMN (survival of motoneuron) protein cause spinal muscular atrophy, the main form of motoneuron disease in children and young adults. In cultured motoneurons, reduced SMN levels lead to disturbed axon growth that correlates with reduced actin mRNA and protein in growth cones, indicating that anterograde transport and local translation of β-actin mRNA are altered in this disease. However, it is not fully understood how local translation of the β-actin mRNA is regulated in SMN-deficient motoneurons. Here, we established a lentiviral GFP-based reporter construct to monitor local translation of β-actin mRNA. Time-lapse imaging of fluorescence recovery after photobleaching (FRAP) in living motoneurons revealed that β-actin is locally translated in the growth cones of embryonic motoneurons. Interestingly, local translation of the β-actin reporter construct was differentially regulated by various Laminin isoforms, indicating that Laminins provide extracellular cues for the regulation of local translation in growth cones. Notably, local translation of β-actin mRNA was deregulated in motoneurons from a mouse model for the most severe form of SMA (Smn ?/? ;SMN2). Taken together our findings suggest that local translation of β-actin in growth cones of motoneurons is regulated by Laminin signalling and that this signalling is disturbed in SMA.  相似文献   

11.
The distribution and morphology of motoneurons innervating specific types of muscle fibers in the levator scapulae superior (LSS) muscle complex of the bullfrog (Rana catesbeiana) and tiger salamander (Ambystoma tigrinum) were studied by retrograde labelling with cholera toxin-conjugated horseradish peroxidase (CT-HRP). The LSS muscle complex in both of these amphibians has a segregated pattern of muscle-fiber types (tonic; fast oxidative-glycolytic twitch [FOG]; fast glycolytic twitch [FG]) along an anteroposterior axis. The entire motor pool was labelled by injection of CT-HRP into the whole LSS muscle complex. The motoneurons innervating specific fiber types were labelled by injection of CT-HRP into certain muscle regions. The organization of the motoneuron pool of the LSS complex of both species was arranged in two columns—one ventrolateral and one medial. In bullfrogs, the ventrolateral column contains motoneurons innervating FG and tonic fiber types and the medial column contains motoneurons innervating FOG fiber types. In tiger salamanders, the ventrolateral column contains motoneurons innervating FG fiber types and the medial column contains motoneurons innervating FOG and tonic fiber types. The different motoneuron types also have different soma sizes and patterns of dendritic arborization. In both species, FG motoneurons are the largest, whereas FOG motoneurons are intermediate in size and tonic motoneurons are the smallest. In bullfrogs, the main dendrites of FG motoneurons extend into the dorsolateral and the ventrolateral gray matter of the spinal cord, whereas the dendrites of FOG motoneurons extend into the ventral and medial cord. In the tiger salamander, dendrites of FG motoneurons extend into the ventrolateral spinal cord and dendrites of the FOG motoneurons extend more generally into the ventral cord. Dendrites of tonic motoneurons in both amphibians were small and short, and difficult to observe. These results establish that motoneurons innervating different types of muscle fibers in the LSS muscle complex are segregated spatially and display consistent morphological differences. © 1993 Wiley-Liss, Inc.  相似文献   

12.
We set out to decompose the EMG signal into its constituent motor unit action potential components to track motor unit firing rates with a high degree of accuracy and extract their average firing rate. We were able to show that this average firing rate tracks the subject's force trajectory from beginning to end. We propose that this average firing rate is a volitional control signal pointing to the existence of a 'volitional unit'. This volitional unit has to do with the projection of a group of functionally related cortico-motoneurons on a group of spinal motoneurons in the motoneuronal pool of a muscle. Our study of motor unit firing patterns during their steady state showed that spinal motoneurons respond to a descending central input in a Gaussian manner. We have further shown that the central drive itself, as represented by the average firing rate of the active motor units, also displays a Gaussian firing behavior. We have also described the existence of a 'translation factor', highly correlated to the motor unit size, which is unique to each spinal motoneuron and determines the motoneuronal response, and its resulting firing rate, to the descending inputs. As for force generation, we have shown that expressing the twitch force of a motor unit in a dynamic fashion using the 'electrotwitch' concept of firing rate x macro area, approximates motor unit force output better and accounts for firing rate related force changes more effectively than force estimates based on the mechanical twitch.  相似文献   

13.
Swimming in reduced electrophysiological preparations of the pteropod mollusc, Clione limacina, was blocked by bath application of hexamethonium even though pattern generator activity continued with this treatment. Neuromuscular recordings indicated that hexamethonium blocked synaptic input from Pd-3 and Pd-4 motoneurons to slow-twitch muscle cells, while connections from Pd-1A and Pd-2A motoneurons to fast-twitch muscle cells were variable in their response to hexamethonium—synaptic inputs were suppressed in most cases and occasionally blocked, but the latter only with high concentrations and long incubations. Acutely dissociated wing muscle cells showed a concentration-dependency in the percentage of contracted cells with bath application of acetylcholine, and this contractile activity was blocked in preparations that were first bathed in hexamethonium. Intracellular recordings from dissociated slow-twitch muscle cells showed conductance-increase depolarizations of approximately 20 mV following 1 s pressure ejections of 10−4 M acetylcholine from micropipettes placed immediately adjacent to the muscle cells. These responses were blocked when hexamethonium was bath applied prior to the pressure-applied acetylcholine. The results suggest the Pd-3/Pd-4 motoneuron to slow-twitch muscle cell junctions are cholinergic with nicotinic-like receptors, while the Pd-1A/Pd-2A to fast-twitch muscle cell connections are likely cholinergic, but with a different receptor type.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a fatal neurological condition with no cure. Mitochondrial dysfunction, Ca2+ overloading and local hypoxic/ischemic environments have been implicated in the pathophysiology of ALS and are conditions that may initiate metabolic acidosis in the affected tissue. We tested the hypothesis that acidotoxicity and acid-sensing ion channels (ASICs) are involved in the pathophysiology of ALS. We found that motoneurons were selectively vulnerable to acidotoxicity in vitro, and that acidotoxicity was partially reduced in asic1a-deficient motoneuron cultures. Cross-breeding of SOD1G93A ALS mice with asic1a-deficient mice delayed the onset and progression of motor dysfunction in SOD1 mice. Interestingly, we also noted a strong increase in ASIC2 expression in motoneurons of SOD1 mice and sporadic ALS patients during disease progression. Pharmacological pan-inhibition of ASIC channels with the lipophilic amiloride derivative, 5-(N,N-dimethyl)-amiloride hydrochloride, potently protected cultured motoneurons against acidotoxicity, and, given post-symptom onset, significantly improved lifespan, motor performance and motoneuron survival in SOD1 mice. Together, our data provide strong evidence for the involvement of acidotoxicity and ASIC channels in motoneuron degeneration, and highlight the potential of ASIC inhibitors as a new treatment approach for ALS.  相似文献   

15.
The functional status of brachially innervated hindlimbs, produced by transplanting hindlimb buds of chick embryos in place of forelimb buds, was quantified by analyzing the number and temporal distribution of spontaneous limb movements. Brachially innervated hindlimbs exhibited normal motility until E10 but thereafter became significantly less active than normal limbs and the limb movements were more randomly distributed. Contrary to the findings with axolotls and frogs, functional interaction between brachial motoneurons and hindlimb muscles cannot be sustained in the chick embryo. Dysfunction is first detectable at E10 and progresses to near total immobility by E20 and is associated with joint ankylosis and muscular atrophy. Although brachially innervated hindlimbs were virtually immobile by the time of hatching (E21), they produced strong movements in response to electrical stimulation of their spinal nerves, suggesting a central rather than peripheral defect in the motor system. The extent of motoneuron death in the brachial spinal cord was not significantly altered by the substitution of the forelimb bud with the hindlimb bud, but the timing of motoneuron loss was appropriate for the lumbar rather than brachial spinal cord, indicating that the rate of motoneuron death was dictated by the limb. Measurements of nuclear area indicated that motoneuron size was normal during the motoneuron death period (E6-E10) but the nuclei of motoneurons innervating grafted hindlimbs subsequently became significantly larger than those of normal brachial motoneurons. Although the muscle mass of the grafted hindlimb at E18 was significantly less than that of the normal hindlimb (and similar to that of a normal forelimb), electronmicroscopic examination of the grafted hindlimbs and brachial spinal cords of E20 embryos revealed normal myofiber and neuromuscular junction ultrastructure and a small increase in the number of axosomatic synapses on cross-sections of motoneurons innervating grafted hindlimbs compared to motoneurons innervating normal forelimbs. The anatomical data indicate that, rather than being associated with degenerative changes, the motor system of the brachial hindlimb of late-stage embryos is intact, but inactive. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Two types of rhythmic foregut movements are described in fifth instar larvae of the moth, Manduca sexta. These consist of posteriorly-directed waves of peristalsis which move food toward the midgut, and synchronous constrictions of the esophageal region, which appear to retain food within the crop. We describe these movements and the muscles of the foregut that generate them.The firing patterns of a subset of these muscles, including a constrictor and dilator pair from both the esophageal and buccal regions of the foregut, are described for both types of foregut movement.The motor patterns for the foregut muscles require innervation by the frontal ganglion (FG), which lies anterior to the brain and contains about 35 neurons. Eliminating the ventral nerve cord, leaving the brain and FG intact, did not affect the muscle firing patterns in most cases. Eliminating both the brain and the ventral nerve cord, leaving only the FG to innervate the foregut, generally resulted in an increased period for both gut movements and muscle bursts. This manipulation also produced increases in burst durations for most muscles, and had variable effects on the phasing of muscle activity. Despite these changes, the foregut muscles still maintained a rhythmic firing pattern when innervated by the FG alone.Two nerves exit the FG to innervate the foregut musculature: the anteriorly-projecting frontal nerve, and the posteriorly-directed recurrent nerve. Cutting the frontal nerve immediately and irreversibly stopped all muscle activity in the buccal region, while cutting the recurrent nerve immediately stopped all muscle activity in the pharyngeal and esophageal regions. Recordings from the cut nerves leaving the FG showed that the ganglion was spontaneously active, with rhythmic activity continuing within the nerves. These observations indicate that all of the foregut muscle motoneurons are located within the FG, and the FG in isolation produces a rhythmic firing pattern in the motoneurons. We have identified several motoneurons within the FG, by cobalt backfills and/or simultaneous intracellular recordings and fills from putative motoneurons and their muscles.Abbreviations BC Buccal Constrictor - BC1 buccal constrictor motoneuron 1 - BC2 buccal constrictor motoneuron 2 - BD Buccal Dilator - BD1 buccal dilator motoneuron 1 - EC Esophageal Dilator - EC1 esophageal dilator motoneuron 1 - EC2 esophageal dilator motoneuron 2 - EC3 esophageal dilator motoneuron 3 - ejp excitatory junction potential - FG frontal ganglion - psp postsynaptic potential  相似文献   

17.
Cuticular strain associated with support of the shell of the hermit crab, Pagurus pollicarus, by its abdomen activates mechanoreceptors that evoke a stereotyped reflex in postural motoneurons. This reflex consists of three phases: a brief high-frequency burst of motoneuron spikes, a pause, and a much longer duration but lower frequency period of spiking. These phases are correlated with a rapid increase in muscle force followed by a slight decline to a level of tone that is greater than that at rest but less than maximal. The present experiments address the mechanisms underlying the transition from the first to second phase of the reflex and their role in force generation. Although centrally generated inhibitory post-synaptic potentials (IPSPS) are present during the pause period of the reflex, intracellular current injection of motoneurons reveals a spike frequency adaptation that rapidly and substantially reduces motoneuron firing frequency and is unchanged in saline that reduces synaptic transmission. The adaptation is voltage sensitive and persists for several hundred milliseconds upon repolarization. Hyperpolarization partially restores the initial response of the motoneuron to depolarizing current. Spike frequency adaptation and synaptic inhibition are important mechanisms in the generation of force that maintains abdominal stiffness at a constant, submaximal level.  相似文献   

18.
Parallel recordings of potentials from primary afferent fibers and motoneurons connected monosynaptically with them were obtained in experiments on the isolated, perfused frog spinal cord and this was followed by intra-axonal and intracellular injection of horseradish peroxidase. Terminals of the primary afferent fibers were shown to reach the motor nuclei of the ventral horn, and one fiber could form contacts with several motoneurons. Synapses formed by afferent terminals were found not only on distal, but also on proximal segments of dendrites and also on motoneuron bodies. Synapses were most numerous on the proximal segments of the dendrites and branches of the second-third orders. Recurrent axon collaterals of motoneurons forming synapses with dendrites were found.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 60–68, January–February, 1982.  相似文献   

19.
Rate-coding in spinal motoneurons was studied using high-frequency magnetic stimulation of the human motor cortex. The subject made a weak contraction to cause rhythmic (i.e., tonic) discharge of a single motor unit in flexor (or extensor) carpi radialis or tibialis anterior, while the motor cortical representation of that muscle was stimulated with brief trains of pulses from a Pyramid stimulator (4 Magstim units connected by 3 BiStim modules). An "m@n" stimulus train consisted of m number of pulses (1-4), with an interpulse interval (IPI) of n ms (1-6). Peristimulus time histograms were constructed for each stimulus condition of a given motor unit, and related to the average rectified surface electromyography (EMG) from that muscle. Surface EMG responses showed markedly more facilitation than single-pulse stimulation, with increasing numbers of pulses in the train; responses also tended to increase in magnitude for the longer IPI values (4 and 6 ms) tested. Motor-unit response probability increased in a manner comparable to that of surface EMG. In particular, motoneurons frequently responded twice to a given stimulus train. In addition to recruitment of new motor units, the increased surface EMG responses were, in part, a direct consequence of short-term rate-coding within the tonically discharging motoneuron. Our results suggest that human corticomotoneurons are capable of reliably following high-frequency magnetic stimulation rates, and that this activity pattern is carried over to the spinal motoneuron, enabling it to discharge at extremely high rates for brief periods of time, a pattern known to be optimal for force generation at the onset of a muscle contraction.  相似文献   

20.
Presynaptic inhibition (PSI) has been shown to modulate several neuronal pathways of functional relevance by selectively gating the connections between sensory inputs and spinal motoneurons, thereby regulating the contribution of the stretch reflex circuitry to the ongoing motor activity. In this study, we investigated whether a differential regulation of Ia afferent inflow by PSI may be associated with the performance of two types of plantarflexion sensoriomotor tasks. The subjects (in a seated position) controlled either: 1) the force level exerted by the foot against a rigid restraint (force task, FT); or 2) the angular position of the ankle when sustaining inertial loads (position task, PT) that required the same level of muscle activation observed in FT. Subjects were instructed to maintain their force/position at target levels set at ~10% of maximum isometric voluntary contraction for FT and 90° for PT, while visual feedback of the corresponding force/position signals were provided. Unconditioned H-reflexes (i.e. control reflexes) and H-reflexes conditioned by electrical pulses applied to the common peroneal nerve with conditioning-to-test intervals of 21 ms and 100 ms (corresponding to D1 and D2 inhibitions, respectively) were evoked in a random fashion. A significant main effect for the type of the motor task (FT vs PT) (p = 0.005, η2 p = 0.603) indicated that PTs were undertaken with lower levels of Ia PSI converging onto the soleus motoneuron pool. Additionally, a significant interaction between the type of inhibition (D1 vs D2) and the type of motor task (FT vs PT) (p = 0.038, η2 p = 0.395) indicated that D1 inhibition was associated with a significant reduction in PSI levels from TF to TP (p = 0.001, η2 p = 0.731), whereas no significant difference between the tasks was observed for D2 inhibition (p = 0.078, η2 p = 0.305). These results suggest that D1 and D2 inhibitions of the soleus H-reflex are differentially modulated during the performance of plantarflexion FT and PT. The reduced level of ongoing PSI during PT suggests that, in comparison to FT, there is a larger reliance on inputs from muscle spindles primary afferents when the neuromuscular system is required to maintain position-controlled plantarflexion contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号