首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seeds of pokeweed (Phytolacca americana L.), an underinvestigated species, were studied to determine optimal conditions for laboratory germination. Soaking seeds in acid solutions prior to sowing increased rates of germination. Concentrated (conc) H2SO4 was more effective than conc NO3 or conc HCl acids. Physiological evidence from seed germination studies suggests that autotoxicity, or intraspecific inhibition, exists in pokeweed, a species known to possess several biologically active compounds. Seed germination was investigated in the laboratory with aqueous extracts of vegetative and reproductive structures of the plant. The presence of extracts from most plant parts correlated with reduced or no germination by seeds of its own species, whereas the presence of distilled water correlated with high percentages of germination by control seeds. Whether diluted with water by 5-fold (20% v/v) or undiluted, juice of pokeweed fruits completely inhibited the laboratory germination of pokeweed seeds. Also, extracts of freshly harvested mature leaves, stems, and immature fruits inhibited seed germination. However, results with root extracts, obtained from a single individual, depended more on concentration, since the highest concentration (50% v/v) inhibited germination, and lower concentrations (10 and 20% v/v) increased germination percentages over control samples. Results with extracts of juvenile leaves correlated with neither inhibition nor promotion of germination. Thus, except for juvenile leaves and the root, most extracts of the pokeweed plant inhibited seed germination with more mature structures exerting more inhibition and less mature structures exerting less or no inhibition. The ecological implication of autotoxicity is that seeds are more dispersed through time and space. In regard to seed germination by other species, especially those taxa known to possess biologically active compounds, these and other results suggest that the phenomenon of autotoxicity might be more widespread than previously suspected.  相似文献   

2.
Polyurethanes prepared from vegetable oils display a number of desirable properties useful for many commercial and industrial applications. One unique application is that of an agricultural seed treatment. Seed treatments are used to incorporate pesticides onto the seed coat and to decrease the disease susceptibility of the seed during its germination in the soil. In addition, by altering the movement of water across the seed coat and by incorporating protective pesticides in the coating, seed coating polymers can enhance the germination and survival of the seed under adverse environmental conditions. Soy polyols alone, and in combination with glycerin, polymerized with 4,4'-diphenylmethane diisocyanate (MDI) were studied for their seed treating properties and impact on soybean seed germination. The cross-linking density and properties of these polyurethane compounds were varied by changing the isocyanate/hydroxyl molar ratios. In order to optimize the coating qualities and to increase the efficiency of the coating, acetone was also studied as a diluting solvent to reduce the viscosity of the polyurethane mixture prior to polymerization on the seed coat. Optimal polymerization and resulting germination (95%) were obtained using a 1:1 isocyanate/hydroxyl molar ratio consisting of a mixture of soy polyol 180 and glycerin, and the use of an equal volume of acetone as a dilution solvent. This optimal polyurethane seed treatment had several desirable qualities including: reduced viscosity, decreased seed coating thickness, increased seed coating uniformity and permitted larger volumes of seed to be treated with the same volume of polymer. This optimal seed treatment increased the soybean seed germination by 15%, as compared with untreated seed. In addition, preliminary studies of the compatibility of these unique formulations with commercial and experimental fungicides also support the use of these polymers as seed treatments due to their enhanced stability, longevity and slow active ingredient water teaching characteristics. Compatibility of these seed coating polymers as formulations with captan, metalaxyl, thiabendazole and novel antimicrobial lipids and triterpenoid compounds display that the active ingredients can readily provide a zone of fungal inhibition around the seed as it germinates in the presence of Macrophomina phaseolino, causal agent of charcoal rot of soybeans. However, the release of the active ingredient from the polyol seed treatments is less affected by water leaching as compared to commercially available water-soluble seed treating polymer formulations. This is most likely due to the polyols unique polymer cross-linking characteristics. These results support the continued exploration of soy polyol derived polymers as seed coating compounds.  相似文献   

3.

Seed priming is a treatment that controls seed water content to partially activate germination processes such as metabolism but prevents full germination of the seeds. The treatment is well known to enhance seed performance, including germination, but sometimes reduces seed storability or longevity as a side effect. Toward developing a novel priming technique that can maintain seed longevity for a longer time period, chemicals that suppress the seed deterioration under a controlled condition were screened from 80 known biologically active compounds contained in the RIKEN NPDepo authentic library using Arabidopsis thaliana seeds. Seeds primed with mimosine, a cell cycle inhibitor, retained higher survival rate after a controlled deterioration treatment compared to seeds primed without the chemical. In addition, other cell cycle inhibitors such as aphidicolin, hydroxyurea and oryzalin had similar effects on the seed storability after priming. Our results suggest that progression of the cell cycle during priming is an important checkpoint that determines the storability of seeds after the treatment.

  相似文献   

4.
A structure-activity relationship study was conducted assaying 25 natural analogues and derivatives of fusicoccin (FC), and cotylenol, the aglycone of cotylenins, for their ability to stimulate the seed germination of the parasitic species Orobanche ramosa. Some of the compounds tested proved to be highly active, being 8,9-isopropylidene of the corresponding FC aglycone and the dideacetyl derivative the most active FC derivatives. In both groups of glucosides and aglycones (including cotylenol), the most important structural feature to impart activity appears to be the presence of the primary hydroxy group at C-19. Furthermore, the functionalities and the conformation of the carbotricyclic ring proved to play a significant role. The dideacetyl derivative of FC, being easily and rapidly obtainable in high yield starting by FC, could be of interest for its practical application as a stimulant of Orobanche ramosa seed germination, inducing the "suicidal germination", an interesting approach for parasitic plant management.  相似文献   

5.
Striga spp. are obligate root-parasitic flowering plants that threaten cereal and legume production, and consequently human well-being, in Africa. Successful control depends on eliminating the seed reserves of Striga spp. in soil and preventing parasitism. A proven method of eliminating these seed reserves is soil-injection of ethylene gas. This method was used successfully in the United States to control Striga asiatica, but injection of ethylene gas is potentially dangerous, very costly, and generally unsuitable in Africa. The bacterium Pseudomonas syringae pathovar glycinea synthesizes relatively large amounts of ethylene. In this study a laboratory procedure was developed for testing strains of P. syringae pv. glycinea for efficacy in stimulating germination of seeds of Striga spp. The procedure allows comparisons among bacteria, volatile compounds, root exudates, and synthetic stimulants for germination of Striga spp. seeds. Seeds of three Striga spp. were tested over a 10-month period. No seed germination was ever observed with sterile water. When compared across Striga spp. the bacterial strains were consistently better stimulators of germination of seeds of the parasites than ethylene gas or root pieces of a Vigna unguiculata cultivar known to stimulate germination of parasite seeds. The strains were as effective in germinating S. aspera and S. gesnerioides seeds as a synthetic germination stimulant. Our results showing that ethylene-producing bacteria are highly effective in promoting seed germination in Striga spp. suggest that these bacteria may provide a practical means of biological control of Striga spp. in Africa and other locations.  相似文献   

6.
根寄生植物种子萌发刺激物研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
周峰  陈君  徐荣  于晶 《植物生态学报》2009,33(3):607-616
根寄生植物是被子植物中一类寄生在寄主根部, 以摄取寄主水分和营养物质为生的特殊植物类群, 其种子萌发需要寄主萌发刺激物的诱导。该文主要阐述根寄生植物种子萌发的特异性, 以及目前已发现的刺激种子萌发的信号物质及其调节机制和生物合成途径, 并就萌发刺激物的识别机制及其在根寄生植物或丛枝菌根真菌与寄主建立寄生关系过程中所起的作用进行综述, 提出根寄生植物种子萌发研究中存在的问题, 并对其研究前景进行了展望。  相似文献   

7.
The conservation of rare plant species is an important aspect of global biodiversity protection, but in many cases these species and the reasons why they are rare are poorly understood. The perennial umbellifer Apium repens is generally regarded to be a rare species all over its European range. We hypothesized that its rarity might be caused by a restricted regeneration niche, that is, highly specific requirements for sexual regeneration, low seed dispersal potential and low endurance capacity of seeds in the ground. We conducted several experimental investigations on its germination ecology, hydrochorous dispersal potential and soil seed bank properties. Apium repens showed high germination success under a variety of abiotic conditions. Either light or cold-wet stratification was necessary to stimulate germination. Seeds were able to float for more than 50 days when protected from precipitation, and soil seed bank sampling revealed that at least some seeds of A. repens were contained in soil depths of up to 10 cm. Overall, our findings do not support the hypothesis that the rarity of A. repens is caused by highly specific requirements for its sexual regeneration. Nonetheless, its germination ecology should be considered when designing conservation measures for this endangered species.  相似文献   

8.
In several species, seed germination is regulated by light in a way that restricts seedling emergence to the environmental conditions that are likely to be favourable for the success of the new individual, and therefore, this behaviour is recognized to have adaptive value. The phytochromes are one of the most relevant photoreceptors involved in light perception by plants. We explored the redundancy and diversity functions of the phytochrome family in the control of seed responsiveness to light and gibberellins (GA) by using a set of phytochrome mutants of Arabidopsis. Our data show that, in addition to the well‐known role of phyB in the promotion of germination in response to high red to far‐red ratios (R/FR), phyE and phyD stimulate germination at very low R/FR ratios, probably by promoting the action of phyA. Further, we show that phyC regulates negatively the seed responsiveness to light, unravelling unexpected functions for phyC in seed germination. Finally, we find that seed responsiveness to GA is mainly controlled by phyB, with phyC, phyD and phyE having relevant roles when acting in a phyB‐deficient background. Our results indicate that phytochromes have multiple and complex roles during germination depending on the active photoreceptor background.  相似文献   

9.
Seed germination is determined by the environmental conditions typical of a habitat and also by the geographical origin of the source species pool. During the Quaternary, Brazilian Atlantic Rain Forest species expanded their distribution into the sandy coastal plains (restingas). Periods of water shortage, however, are frequent in the sandy substrate of the restinga. We investigated whether the germination characteristics of restinga species are more related to their biogeographical origin in the humid forest or to water shortage on sandy substrates. We characterized the seed dispersal phenology of a restinga community and conducted experiments to determine the water requirements for seed germination and the short-term seed dehydration sensitivity of different species. Species shed seeds throughout the year in the restinga. When subjected to Ψ=−0.37 MPa, seed germination percentage decreased and germination time increased in six of ten species when compared with Ψ=0 MPa. Most species showed high seed moisture content (MC>40 %) at seed dispersal. Seeds took 3–17 d to dehydrate when subjected to relative humidity≤76 percent and only two of eight species had seeds sensitive to short-term dehydration. Thus, rather than a specific set of germination characteristics related to humid or dry habitats, we gathered evidence to show that the germination characteristics of restinga species represent a multiplicity of responses that may be found in both kinds of habitat.  相似文献   

10.
During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were created. Through careful physiological analysis of these seed lots combined with gene expression analysis using a dedicated cDNA microarray, gene expression could be correlated to physiological processes that occurred within the seeds. In addition, gene expression was studied during early stages of seed germination, prior to radicle emergence, since very little detailed information of gene expression during this process is available. During seed maturation expression of many known seed maturation genes, such as late-embryogenesis abundant or storage-compound genes, was high. Notably, a small but distinct subgroup of the maturation genes was found to correlate to seed stress tolerance in osmoprimed and dried seeds. Expression of these genes rapidly declined during priming and/or germination in water. The majority of the genes on the microarray were up-regulated during osmopriming and during germination on water, confirming the hypothesis that during osmopriming, germination-related processes are initiated. Finally, a large group of genes was up-regulated during germination on water, but not during osmopriming. These represent genes that are specific to germination in water. Germination-related gene expression was found to be partially reversible by physiological treatments such as slow drying of osmoprimed seeds. This correlated to the ability of seeds to withstand stress.  相似文献   

11.
Spartidium saharae is an endemic species of the Saharo-Arabian region. It is a tall shrub widely distributed in many sandy habitats including desert dunes and sandy systems in south-western part of Tunisia, where water and salinity are serious constraints. Laboratory experiments were carried out to assess temperature and salinity effects on seed germination. The seed germination responses were determined in complete darkness over a wide range of temperatures and salinities. Germination was inhibited by either an increase or decrease in temperature from the optimal temperature range (15–20°C). Highest germination percentages were obtained under nonsaline conditions and an increase in NaCl concentrations progressively inhibited seed germination. An interaction between salinity and temperature yielded no germination at 200 m m NaCl.  相似文献   

12.
ABSTRACT

An infusion of Ruta graveolens L. was tested for its inhibitory effects upon radish germination at the cyto-physiological level. Radish seeds were placed under optimum conditions for germination either in water (control) or in the presence of rue infusion (treated seeds). Morpho-physiological observations indicate that in treated radish seeds the inhibition of germination is accompanied by reduced water uptake and delayed reactivation of the outermost living layer, i.e. the aleurone cells. Compared to the control, aleurone cells of treated seeds present many large lipid droplets and protein bodies, without differentiated organelles. Moreover, chemical and biochemical analyses show that the treatment impairs the metabolic pathways of germination, such as the mobilization and utilization of seed reserves, and the loosening of cell walls. In fact, in treated seeds we found i) increased contents of glucose and galactose, ii) higher concentration of malic acid and iii) lower activities of some glycosidases compared to the control. Results suggest that aleurone cells may play an active part in controlling the embryo's metabolism.  相似文献   

13.
在对产于云南西双版纳的热带兰花菌根进行研究时,发现一分离自墨兰的菌株,菌丝纯白色,具典型的锁状连合,对其子实体的鉴定表明该菌株代表着一新分类单位——兰小菇Mycena orchidicola Fan et Guo sp.nov.同时,对该新种在兰科种子萌发中的作用作了初步探讨,结果表明该菌可侵入兰科种子,促进种子萌发。  相似文献   

14.
Karrikins are a family of compounds produced by wildfires that can stimulate the germination of dormant seeds of plants from numerous families. Seed plants could have ‘discovered’ karrikins during fire-prone times in the Cretaceous period when flowering plants were evolving rapidly. Recent research suggests that karrikins mimic an unidentified endogenous compound that has roles in seed germination and early plant development. The endogenous signalling compound is presumably not only similar to karrikins, but also to the related strigolactone hormones.  相似文献   

15.
Through the use of a microthermocouple psychrometer it has becomepossible to measure the water potential over part of the surfaceof a pea seed, starting about 19 hours after sowing in distilledwater, or later in the case of seeds germinating at lower osmoticpotentials, in both instances until well after radicles haveemerged. It has been shown that the potential of air-dry seedsis well below –6,000 joules/kg but increases rapidly duringimbibition, depending upon the water potential of the germinationmedium. Pea seeds subjected to lower external water potentialsgerminate at lower internal water potentials than they exhibitin distilled water. The water potentials of the seeds decreasejust after radicle emergence till the radicle establishes contactwith its germination medium, possibly as a result of demandfor moisture during that period due to incipient cell elongation.No detectable amounts of osmotically active substances are exudedfrom the seed during germination; the pea seed coat restrictsthe entry of polyethylene glycol molecules into the seed untilemergence of the radicle.  相似文献   

16.
The soybean callus assay was used to study the effect of stratification on the cytokinin levels of the embryo dormant seed of Protea compacta R.Br. and the seed of Leucadendron dapbnoides Meisn., where dormancy is coat imposed. Chilling the seed for 30 days increased germination significantly, and resulted in a simultaneous increase in the butanol soluble cytokinins of both species. It would appear as if these compounds are either synthesized or released from a bound form in embryo dormant seed. In contrast, an interconversion from water soluble to butanol soluble cytokïnins appears to account for the increase where dormancy is coat imposed. The results also indicate that for germination to take place a threshold concentration of cytokinin may be required. It is suggested that the increase in butanol soluble cytokinins may lead to the breaking of dormancy, probably by increasing radicle elongation and/or cotyledon expansion.  相似文献   

17.
Gibberellic acid (GA), a plant hormone stimulating plant growth and development, is a tetracyclic di-terpenoid compound. GAs stimulate seed germination, trigger transitions from meristem to shoot growth, juvenile to adult leaf stage, vegetative to flowering, determines sex expression and grain development along with an interaction of different environmental factors viz., light, temperature and water. The major site of bioactive GA is stamens that influence male flower production and pedicel growth. However, this opens up the question of how female flowers regulate growth and development, since regulatory mechanisms/organs other than those in male flowers are mandatory. Although GAs are thought to act occasionally like paracrine signals do, it is still a mystery to understand the GA biosynthesis and its movement. It has not yet confirmed the appropriate site of bioactive GA in plants or which tissues targeted by bioactive GAs to initiate their action. Presently, it is a great challenge for scientific community to understand the appropriate mechanism of GA movement in plant’s growth, floral development, sex expression, grain development and seed germination. The appropriate elucidation of GA transport mechanism is essential for the survival of plant species and successful crop production.  相似文献   

18.
Plant-derived smoke extracts stimulate the germination of many different seeds. the present report explains steps to determine some of the chemical characteristics of the compounds concerned. Grand Rapids lettuce seeds were used as a bioassay because smoke-derived extracts overcome their light-sensitivity. The active compounds were partitioned into ethyl acetate, separated by various TLC systems and fractionated by reverse phase HPLC. They are stable surviving a series of chromatographic steps and are very active biologically. In order to ascertain their chemical properties it was necessary to use a range of dilutions after each isolation step. It would appear that similar types of compounds are present in smoke extracts derived from different plant material.  相似文献   

19.
The spatial and temporal fluctuations of water availability can be an obstacle for recruitment of many species in the restinga and might restrict seed germination and seedling growth in specific regeneration safe-sites. Clusia hilariana is one of the most dominant species of Restinga de Jurubatiba. This species has a high proportion of seedling establishment occurring inside the tanks of soil bromeliads underneath vegetation patches. Given the thin seed coats, the fast germination time and seed dispersal of C. hilariana during the dry season, we hypothesized that their major regeneration niche (the tanks of soil bromeliads) is related to susceptibility of seed germination and also seedling growth to low water availability. To test this hypothesis, seeds were germinated under decreasing water potentials using PEG 6000 solutions and seedlings were grown under varying water regimes. The percentage of seed germination progressively decreased at lower water potentials. After 38 days in ?1.0 MPa no seeds germinated. However, approximately 90% of seeds germinated when transferred to Ψ = 0 MPa. The relative growth rates of seedlings of C. hilariana did not differ between water treatments. Thus, the major regeneration niche of C. hilariana is not a consequence of a high sensitivity of seeds and seedlings to water shortage. Nonetheless, C. hilariana showed an array of seed and seedling traits that may help to overcome establishment constraints of the harsh environment of restingas.  相似文献   

20.
Strigol and some of its synthetic precursors and analogs are known to be germination stimulants for broomrape (Orobanche ramosa) and witchweed (Striga asiatica). Fifteen synthetic terpenoids, similar in structure to one of the four rings of the strigol molecule, were evaluated in two bioassays as seed germination stimulants with broomrape, and nine were found to be active. Five of the more active compounds contained ester groups. Whereas the study was intended primarily to evaluate forced germination of broomrape by aqueous solutions, the results are almost qualitatively identical for broomrape and witchweed. Monocyclic compounds with chemical structures similar to two of the rings of strigol have now been shown to possess significant bioactivity as germination stimulants.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号