首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The BRCA2 breast cancer tumor suppressor is involved in the repair of double strand breaks and broken replication forks by homologous recombination through its interaction with DNA repair protein Rad51. Cells defective in BRCA2.FANCD1 are extremely sensitive to mitomycin C (MMC) similarly to cells deficient in any of the Fanconi anemia (FA) complementation group proteins (FANC). These observations suggest that the FA pathway and the BRCA2 and Rad51 repair pathway may be linked, although a functional connection between these pathways in DNA damage signaling remains to be determined. Here, we systematically investigated the interaction between these pathways. We show that in response to DNA damage, BRCA2-dependent Rad51 nuclear focus formation was normal in the absence of FANCD2 and that FANCD2 nuclear focus formation and mono-ubiquitination appeared normal in BRCA2-deficient cells. We report that the absence of BRCA2 substantially reduced homologous recombination repair of DNA breaks, whereas the absence of FANCD2 had little effect. Furthermore, we established that depletion of BRCA2 or Rad51 had a greater effect on cell survival in response to MMC than depletion of FANCD2 and that depletion of BRCA2 in FANCD2 mutant cells further sensitized these cells to MMC. Our results suggest that FANCD2 mediates double strand DNA break repair independently of Rad51-associated homologous recombination.  相似文献   

2.
Mutations in BRCA1 account for a significant proportion of familial breast and ovarian cancers. BRCA1 has been implicated in DNA damage responses including double-strand break (DSB) repair. However, its exact role in DSB repair and its functional relationship with other known repair proteins remain to be elucidated. In this study, we carried out a cytological analysis of the effect of BRCA1 on damage-induced nuclear focus formation mediated by the replication protein A (RPA). RPA is a multi-functional protein that participates in both DNA replication and various types of DNA repair including DSB repair. Following ionizing radiation (IR), RPA and BRCA1 formed punctate nuclear staining patterns that co-localized with each other, consistent with the implicated roles of both proteins in the same repair process. The number of damage-induced RPA foci in BRCA1-deficient cells, however, was significantly greater than that in BRCA1-positive cells. Moreover, the effect of BRCA1 on the RPA staining pattern appeared to be specific for IR but not ultraviolet (UV) irradiation. These data suggest that BRCA1 plays an important role in processing the RPA-associated intermediates during DSB repair.  相似文献   

3.
Several proteins in the BRCA‐Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA‐FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA‐FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is suppressed by depletion of the upstream mismatch recognition factor MSH2. MSH2 depletion suppresses an aberrant DNA damage response, restores cell cycle progression, and promotes ICL resistance through a Rad18‐dependent mechanism. MSH2 depletion also suppresses ICL sensitivity in cells deficient for BRCA1 or FANCD2, but not FANCA. Rescue by Msh2 loss was confirmed in Fancd2‐null primary mouse cells. Thus, we propose that regulation of MSH2‐dependent DNA damage response underlies the importance of interactions between BRCA‐FA and MMR pathways.  相似文献   

4.
Dronamraju R  Mason JM 《PloS one》2011,6(9):e25439
Chromatin structure regulates the dynamics of the recognition and repair of DNA double strand breaks; open chromatin enhances the recruitment of DNA damage response factors, while compact chromatin is refractory to the assembly of radiation-induced repair foci. MU2, an orthologue of human MDC1, a scaffold for ionizing radiation-induced repair foci, is a widely distributed chromosomal protein in Drosophila melanogaster that moves to DNA repair foci after irradiation. Here we show using yeast 2 hybrid screens and co-immunoprecipitation that MU2 binds the chromoshadow domain of the heterochromatin protein HP1 in untreated cells. We asked what role HP1 plays in the formation of repair foci and cell cycle control in response to DNA damage. After irradiation repair foci form in heterochromatin but are shunted to the edge of heterochromatic regions an HP1-dependent manner, suggesting compartmentalized repair. Hydroxyurea-induced repair foci that form at collapsed replication forks, however, remain in the heterochromatic compartment. HP1a depletion in irradiated imaginal disc cells increases apoptosis and disrupts G2/M arrest. Further, cells irradiated in mitosis produced more and brighter repair foci than to cells irradiated during interphase. Thus, the interplay between MU2 and HP1a is dynamic and may be different in euchromatin and heterochromatin during DNA break recognition and repair.  相似文献   

5.
Homologous recombination plays an important role in the high-fidelity repair of DNA double-strand breaks. A central player in this process, RAD51, polymerizes onto single-stranded DNA and searches for homology in a duplex donor DNA molecule, usually the sister chromatid. Homologous recombination is a highly regulated event in mammalian cells: some proteins have direct enzymatic functions, others mediate or overcome rate-limiting steps in the process, and still others signal cell cycle arrest to allow repair to occur. While the human BRCA2 protein has a clear role in delivering and loading RAD51 onto single-stranded DNA generated after resection of the DNA break, the mechanistic functions of the RAD51 paralogs remain unclear. In this study, we sought to determine the genetic interactions between BRCA2 and the RAD51 paralogs during DNA DSB repair. We utilized siRNA-mediated knockdown of these proteins in human cells to assess their impact on the DNA damage response. The results indicate that loss of BRCA2 alone imparts a more severe phenotype than the loss of any individual RAD51 paralog and that BRCA2 is epistatic to each of the four paralogs tested.  相似文献   

6.
7.
The human cancer susceptibility gene, BRCA2, functions in double-strand break repair by homologous recombination, and it appears to function via interaction of a repetitive region (“BRC repeats”) with RAD-51. A putatively simpler homolog, dmbrca2, was identified in Drosophila melanogaster recently and also affects mitotic and meiotic double-strand break repair. In this study, we examined patterns of repeat variation both within Drosophila pseudoobscura and among available Drosophila genome sequences. We identified extensive variation within and among closely related Drosophila species in BRC repeat number, to the extent that variation within this genus recapitulates the extent of variation found across the entire animal kingdom. We describe patterns of evolution across species by documenting recent repeat expansions (sometimes in tandem arrays) and homogenizations within available genome sequences. Overall, we have documented patterns and modes of evolution in a new model system of a gene which is important to human health.  相似文献   

8.
BRCA2 is a breast cancer susceptibility gene implicated in the repair of double-strand breaks by homologous recombination with RAD51. BRCA2 associates with a 70-amino-acid protein, DSS1, but the functional significance of this interaction has remained unclear. Recently, deficiency of a DSS1 orthologue in the fungus Ustilago maydis has been shown to cause a defect in recombinational DNA repair. Here we have investigated the consequences of DSS1 depletion in mammalian cells. We show that like BRCA2, DSS1 is required for DNA damage-induced RAD51 focus formation and for the maintenance of genomic stability, indicating a function conserved from lower eukaryotes to humans. However, DSS1 seems to be not required for BRCA2 or RAD51 stability or for BRCA2 and RAD51 to interact, raising the possibility that DSS1 may be required for the BRCA2-RAD51 complex to become associated with sites of DNA damage.  相似文献   

9.
Rad17 is a subunit of the Rad9-Hus1-Rad1 clamp loader complex, which is required for Chk1 activation after DNA damage. Rad17 has been shown to be regulated by the ubiquitin-proteasome system. We have identified a deubiquitylase, USP20 that is required for Rad17 protein stability in the steady-state and post DNA damage. We demonstrate that USP20 and Rad17 interact, and that this interaction is enhanced by UV exposure. We show that USP20 regulation of Rad17 is at the protein level in a proteasome-dependent manner. USP20 depletion results in poor activation of Chk1 protein by phosphorylation, consistent with Rad17 role in ATR-mediated phosphorylation of Chk1. Similar to other DNA repair proteins, USP20 is phosphorylated post DNA damage, and its depletion sensitizes cancer cells to damaging agents that form blocks ahead of the replication forks. Similar to Chk1 and Rad17, which enhance recombinational repair of collapsed replication forks, we demonstrate that USP20 depletion impairs DNA double strand break repair by homologous recombination. Together, our data establish a new function of USP20 in genome maintenance and DNA repair.  相似文献   

10.
11.
12.
DNA damage, malfunctions in DNA repair, and genomic instability are processes that intersect at the crossroads of carcinogenesis. Underscoring the importance of DNA repair in breast and ovarian tumorigenesis is the familial inherited cancer predisposition gene BRCA2. The role of BRCA2 in DNA double-strand break repair was first revealed based on its interaction with RAD51, a central player in homologous recombination. The RAD51 protein forms a nucleoprotein filament on single-stranded DNA, invades a DNA duplex, and initiates a search for homology. Once a homologous DNA sequence is found, the DNA is used as a template for the high-fidelity repair of the DNA break. Many of the biochemical features that allow BRCA2 to choreograph the activities of RAD51 have been elucidated and include: targeting RAD51 to single-stranded DNA while inhibiting binding to dsDNA, reducing the ATPase activity of RAD51, and facilitating the displacement of the single-strand DNA binding protein, Replication Protein A. These reinforcing activities of BRCA2 culminate in the correct positioning of RAD51 onto a processed DNA double-strand break and initiate its faithful repair by homologous recombination. In this review, I will address current biochemical data concerning the BRCA2 protein and highlight unanswered questions regarding BRCA2 function in homologous recombination and cancer.  相似文献   

13.
The breast cancer 1 (BRCA1) protein is a tumor suppressor playing roles in DNA repair and cell cycle regulation. Studies of DNA repair functions of BRCA1 have focused on double-strand break (DSB) repair pathways and have recently included base excision repair (BER). However, the function of BRCA1 in BER is not well defined. Here, we examined a BRCA1 role in BER, first in relation to alkylating agent (MMS) treatment of cells and the BER enzyme DNA polymerase β (pol β). MMS treatment of BRCA1 negative human ovarian and chicken DT40 cells revealed hypersensitivity, and the combined gene deletion of BRCA1 and pol β in DT40 cells was consistent with these factors acting in the same repair pathway, possibly BER. Using cell extracts and purified proteins, BRCA1 and pol β were found to interact in immunoprecipitation assays, yet in vivo and in vitro assays for a BER role of BRCA1 were negative. An alternate approach with the human cells of immunofluorescence imaging and laser-induced DNA damage revealed negligible BRCA1 recruitment during the first 60 s after irradiation, the period typical of recruitment of pol β and other BER factors. Instead, 15 min after irradiation, BRCA1 recruitment was strong and there was γ-H2AX co-localization, consistent with DSBs and repair. The rapid recruitment of pol β was similar in BRCA1 positive and negative cells. However, a fraction of pol β initially recruited remained associated with damage sites much longer in BRCA1 positive than negative cells. Interestingly, pol β expression was required for BRCA1 recruitment, suggesting a partnership between these repair factors in DSB repair.  相似文献   

14.
15.
TRF1, a duplex telomeric DNA-binding protein, plays an important role in telomere metabolism. We have previously reported that a fraction of endogenous TRF1 can stably exist free of telomere chromatin when it is phosphorylated at T371 by Cdk1; however, the role of this telomere-free (pT371)TRF1 has yet to be fully characterized. Here we show that phosphorylated (pT371)TRF1 is recruited to sites of DNA damage, forming damage-induced foci in response to ionizing radiation (IR), etoposide and camptothecin. We find that IR-induced (pT371)TRF1 foci formation is dependent on the ATM- and Mre11/Rad50/Nbs1-mediated DNA damage response. While loss of functional BRCA1 impairs the formation of IR-induced (pT371)TRF1 foci, depletion of either 53BP1 or Rif1 stimulates IR-induced (pT371)TRF1 foci formation. In addition, we show that TRF1 depletion or the lack of its phosphorylation at T371 impairs DNA end resection and repair of nontelomeric DNA double-strand breaks by homologous recombination. The lack of TRF1 phosphorylation at T371 also hampers the activation of the G2/M checkpoint and sensitizes cells to PARP inhibition, IR and camptothecin. Collectively, these results reveal a novel but important function of phosphorylated (pT371)TRF1 in facilitating DNA double-strand break repair and the maintenance of genome integrity.  相似文献   

16.
Disruption of the BRCA2 tumor suppressor is associated with structural and numerical chromosomal defects. The numerical abnormalities in BRCA2-deficient cells may partly result from aberrations in cell division caused by disruption of BRCA2 during cytokinesis. Here we show that BRCA2 is a component of the midbody that is recruited through an interaction with Filamin A actin-binding protein. At the midbody, BRCA2 influences the recruitment of endosomal sorting complex required for transport (ESCRT)-associated proteins, Alix and Tsg101, and formation of CEP55-Alix and CEP55-Tsg101 complexes during abscission. Disruption of these BRCA2 interactions by cancer-associated mutations results in increased cytokinetic defects but has no effect on BRCA2-dependent homologous recombination repair of DNA damage. These findings identify a specific role for BRCA2 in the regulation of midbody structure and function, separate from DNA damage repair, that may explain in part the whole-chromosomal instability in BRCA2-deficient tumors.  相似文献   

17.
Slijepcevic P 《DNA Repair》2006,5(11):1299-1306
Telomeres are specialized structures at chromosome ends which play the key role in chromosomal end protection. There is increasing evidence that many DNA damage response proteins are involved in telomere maintenance. For example, cells defective in DNA double strand break repair proteins including Ku, DNA-PKcs, RAD51D and the MRN (MRE11/RAD51/NBS1) complex show loss of telomere capping function. Similarly, mouse and human cells defective in ataxia telangiectasia mutated (ATM) have defective telomeres. A total of 14 mammalian DNA damage response proteins have, so far, been implicated in telomere maintenance. Recent studies indicate that three more proteins, namely BRCA1, hRad9 and PARP1 are involved in telomere maintenance. The involvement of a wide range of DNA damage response proteins at telomeres raises an important question: do telomere maintenance mechanisms constitute an integral part of DNA damage response machinery? A model termed the "integrative" model is proposed here to argue in favour of telomere maintenance being an integral part of DNA damage response. The "integrative" model is supported by the observation that a telomeric protein, TRF2, is not confined to its local telomeric environment but it migrates to the sites of DNA breakage following exposure of cells to ionizing radiation. Furthermore, even if telomeres are maintained in a non-canonical way, as in the case of Drosophila, DNA damage response proteins are still involved in telomere maintenance suggesting integration of telomere maintenance mechanisms into the DNA damage response network.  相似文献   

18.
The CHD1 gene, encoding the chromo‐domain helicase DNA‐binding protein‐1, is one of the most frequently deleted genes in prostate cancer. Here, we examined the role of CHD1 in DNA double‐strand break (DSB) repair in prostate cancer cells. We show that CHD1 is required for the recruitment of CtIP to chromatin and subsequent end resection during DNA DSB repair. Our data support a role for CHD1 in opening the chromatin around the DSB to facilitate the recruitment of homologous recombination (HR) proteins. Consequently, depletion of CHD1 specifically affects HR‐mediated DNA repair but not non‐homologous end joining. Together, we provide evidence for a previously unknown role of CHD1 in DNA DSB repair via HR and show that CHD1 depletion sensitizes cells to PARP inhibitors, which has potential therapeutic relevance. Our findings suggest that CHD1 deletion, like BRCA1/2 mutation in ovarian cancer, may serve as a marker for prostate cancer patient stratification and the utilization of targeted therapies such as PARP inhibitors, which specifically target tumors with HR defects.  相似文献   

19.
To ensure genome stability, cells have evolved a robust defense mechanism to detect, signal, and repair damaged DNA that is generated by exogenous stressors such as ionizing radiation, endogenous stressors such as free radicals, or normal physiological processes such as DNA replication. Homologous recombination (HR) repair is a critical pathway of repairing DNA double strand breaks, and it plays an essential role in maintaining genomic integrity. Previous studies have shown that BRIT1, also known as MCPH1, is a key regulator of HR repair. Here, we report that chromodomain helicase DNA-binding protein 4 (CHD4) is a novel BRIT1 binding partner that regulates the HR repair process. The BRCA1 C-terminal domains of BRIT1 are required for its interaction with CHD4. Depletion of CHD4 and overexpression of the ATPase-dead form of CHD4 impairs the recruitment of BRIT1 to the DNA damage lesions. As a functional consequence, CHD4 deficiency sensitizes cells to double strand break-inducing agents, reduces the recruitment of HR repair factor BRCA1, and impairs HR repair efficiency. We further demonstrate that CHD4-depleted cells are more sensitive to poly(ADP-ribose) polymerase inhibitor treatment. In response to DNA damage induced by poly(ADP-ribose) polymerase inhibitors, CHD4 deficiency impairs the recruitment of DNA repair proteins BRIT1, BRCA1, and replication protein A at early steps of HR repair. Taken together, our findings identify an important role of CHD4 in controlling HR repair to maintain genome stability and establish the potential therapeutic implications of targeting CHD4 deficiency in tumors.  相似文献   

20.
BACKGROUND: The response of eukaryotic cells to double-strand breaks in genomic DNA includes the sequestration of many factors into nuclear foci. Recently it has been reported that a member of the histone H2A family, H2AX, becomes extensively phosphorylated within 1-3 minutes of DNA damage and forms foci at break sites. RESULTS: In this work, we examine the role of H2AX phosphorylation in focus formation by several repair-related complexes, and investigate what factors may be involved in initiating this response. Using two different methods to create DNA double-strand breaks in human cells, we found that the repair factors Rad50 and Rad51 each colocalized with phosphorylated H2AX (gamma-H2AX) foci after DNA damage. The product of the tumor suppressor gene BRCA1 also colocalized with gamma-H2AX and was recruited to these sites before Rad50 or Rad51. Exposure of cells to the fungal inhibitor wortmannin eliminated focus formation by all repair factors examined, suggesting a role for the phosphoinositide (PI)-3 family of protein kinases in mediating this response. Wortmannin treatment was effective only when it was added early enough to prevent gamma-H2AX formation, indicating that gamma-H2AX is necessary for the recruitment of other factors to the sites of DNA damage. DNA repair-deficient cells exhibit a substantially reduced ability to increase the phosphorylation of H2AX in response to ionizing radiation, consistent with a role for gamma-H2AX in DNA repair. CONCLUSIONS: The pattern of gamma-H2AX foci that is established within a few minutes of DNA damage accounts for the patterns of Rad50, Rad51, and Brca1 foci seen much later during recovery from damage. The evidence presented strongly supports a role for the gamma-H2AX and the PI-3 protein kinase family in focus formation at sites of double-strand breaks and suggests the possibility of a change in chromatin structure accompanying double-strand break repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号