首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spinophilin is a protein phosphatase 1 (PP1)- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We report that spinophilin is phosphorylated in vitro by protein kinase A (PKA). Phosphorylation of spinophilin was stimulated by treatment of neostriatal neurons with a dopamine D1 receptor agonist or with forskolin, consistent with spinophilin being a substrate for PKA in intact cells. Using tryptic phosphopeptide mapping, site-directed mutagenesis, and microsequencing analysis, we identified two major sites of phosphorylation, Ser-94 and Ser-177, that are located within the actin-binding domain of spinophilin. Phosphorylation of spinophilin by PKA modulated the association between spinophilin and the actin cytoskeleton. Following subcellular fractionation, unphosphorylated spinophilin was enriched in the postsynaptic density, whereas a pool of phosphorylated spinophilin was found in the cytosol. F-actin co-sedimentation and overlay analysis revealed that phosphorylation of spinophilin reduced the stoichiometry of the spinophilin-actin interaction. In contrast, the ability of spinophilin to bind to PP1 remained unchanged. Taken together, our studies suggest that phosphorylation of spinophilin by PKA modulates the anchoring of the spinophilin-PP1 complex within dendritic spines, thereby likely contributing to the efficacy and plasticity of synaptic transmission.  相似文献   

2.
Cytoplasmic poly(A)-binding protein (PABP) C1 recruits different interacting partners to regulate mRNA fate. The majority of PABP-interacting proteins contain a PAM2 motif to mediate their interactions with PABPC1. However, little is known about the regulation of these interactions or the corresponding functional consequences. Through in silico analysis, we found that PAM2 motifs are generally embedded within an extended intrinsic disorder region (IDR) and are located next to cluster(s) of potential serine (Ser) or threonine (Thr) phosphorylation sites within the IDR. We hypothesized that phosphorylation at these Ser/Thr sites regulates the interactions between PAM2-containing proteins and PABPC1. In the present study, we have tested this hypothesis using complementary approaches to increase or decrease phosphorylation. The results indicate that changing the extent of phosphorylation of three PAM2-containing proteins (Tob2, Pan3, and Tnrc6c) alters their ability to interact with PABPC1. Results from experiments using phospho-blocking or phosphomimetic mutants in PAM2-containing proteins further support our hypothesis. Moreover, the phosphomimetic mutations appreciably affected the functions of these proteins in mRNA turnover and gene silencing. Taken together, these results provide a new framework for understanding the roles of intrinsically disordered proteins in the dynamic and signal-dependent control of cytoplasmic mRNA functions.  相似文献   

3.
4.
cAMP-dependent protein kinase A (PKA) can modulate synaptic transmission by acting directly on unknown targets in the neurotransmitter secretory machinery. Here we identify Snapin, a protein of relative molecular mass 15,000 that is implicated in neurotransmission by binding to SNAP-25, as a possible target. Deletion mutation and site-directed mutagenetic experiments pinpoint the phosphorylation site to serine 50. PKA-phosphorylation of Snapin significantly increases its binding to synaptosomal-associated protein-25 (SNAP-25). Mutation of Snapin serine 50 to aspartic acid (S50D) mimics this effect of PKA phosphorylation and enhances the association of synaptotagmin with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Furthermore, treatment of rat hippocampal slices with nonhydrolysable cAMP analogue induces in vivo phosphorylation of Snapin and enhances the interaction of both Snapin and synaptotagmin with the SNARE complex. In adrenal chromaffin cells, overexpression of the Snapin S50D mutant leads to an increase in the number of release-competent vesicles. Our results indicate that Snapin may be a PKA target for modulating transmitter release through the cAMP-dependent signal-transduction pathway.  相似文献   

5.
The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.  相似文献   

6.
The exon-junction complex (EJC) deposited on a newly spliced mRNA plays an important role in subsequent mRNA metabolic events. Here we show that an EJC core heterodimer, Y14/Magoh, specifically associates with mRNA-degradation factors, including the mRNA-decapping complex and exoribonucleases, whereas another core factor, eIF4AIII/MLN51, does not. We also demonstrate that Y14 interacts directly with the decapping factor Dcp2 and the 5′ cap structure of mRNAs via different but overlapping domains and that Y14 inhibits the mRNA-decapping activity of Dcp2 in vitro. Accordingly, overexpression of Y14 prolongs the half-life of a reporter mRNA. Therefore Y14 may function independently of the EJC in preventing mRNA decapping and decay. Furthermore, we observe that depletion of Y14 disrupts the formation of processing bodies, whereas overexpression of a phosphomimetic Y14 considerably increases the number of processing bodies, perhaps by sequestering the mRNA-degradation factors. In conclusion, this report provides unprecedented evidence for a role of Y14 in regulating mRNA degradation and processing body formation and reinforces the influence of phosphorylation of Y14 on its activity in postsplicing mRNA metabolism.  相似文献   

7.
Cyclin Y, a membrane associated cyclin, is capable of binding and activating CDK14. Here we report that human cyclin Y (CCNY) is a phosphoprotein in vivo and that phosphorylation of CCNY by CDK14 triggers its ubiquitination and degradation. Inactivation of either CDK14 or Cul1 results in accumulation of CCNY. An in vivo and in vitro mapping of CCNY phosphorylation sites by mass spectrometry revealed that the flanking regions of the conserved cyclin box are heavily phosphorylated. Phosphorylation of CCNY at Serines 71 and 73 creates a putative phospho-degron that controls its association with an SCF complex. Mutation of serine to alanine at these two sites stabilized CCNY and enhanced the activity of CCNY/CDK14 on phosphorylation of LRP6. Our results provide insight into autoregulation of the cyclin Y/CDK14 pair in CDK14 activation and cyclin Y turnover which is a process that is involved in membrane proximal signaling.  相似文献   

8.
MRP2, a member of the ABC protein superfamily, functions as an ATP-dependent export pump for anionic conjugates in the apical membranes of epithelial cells. It has been reported that the trafficking of MRP2 is modulated by PKC. Adjacent to the C-terminal PDZ binding motif, which may be involved in the targeting of MRP2, we found a potential PKC phosphorylation site (Ser(1542)). Therefore, we examined the interaction of MRP2 and its phosphorylation-mimicking mutants with different PDZ proteins (EBP50, E3KARP, PDZK1, IKEPP, beta2-syntrophin, and SAP-97). The binding of these PDZ proteins to CFTR and ABCA1, other ABC proteins, possessing PDZ binding motif, was also studied. We observed a strong binding of apically localized PDZ proteins to both MRP2 and CFTR, whereas beta2-syntrophin exhibited binding only to ABCA1. The phosphorylation-mimicking MRP2 mutant and a phosphorylated C-terminal MRP2 peptide showed significantly increased binding to IKEPP, EBP50, and both individual PDZ domains of EBP50. Our results suggest that phosphorylation of the MRP2 PDZ binding motif has a profound effect on the PDZ binding of MRP2.  相似文献   

9.
Grb10 is a member of adapter proteins that are thought to play a role in receptor tyrosine kinase-mediated signal transduction. Grb10 expression levels can influence Akt activity, and Grb10 may act as an adapter involved in the relocalization of Akt to the cell membrane. Here we identified 14-3-3 as a binding partner of Grb10 by employing a yeast two-hybrid screen. The 14-3-3.Grb10 interaction requires phosphorylation of Grb10, and only the phosphorylated form of Grb10 co-immunoprecipitates with endogenous 14-3-3. We could identify a putative phosphorylation site in Grb10, which is located in a classical 14-3-3 binding motif, RSVSEN. Mutation of this site in Grb10 diminished binding to 14-3-3. Thus, Grb10 exists in two different states of phosphorylation and complexes with 14-3-3 when phosphorylated on serine 428. We provide evidence that Akt directly binds Grb10 and is able to phosphorylate Grb10 in an in vitro kinase assay. Based on these findings, we propose a regulatory circuitry involving a phosphorylation-regulated complex formation of Grb10 with 14-3-3 and Akt.  相似文献   

10.
The activation of six target enzymes by calmodulin phosphorylated on Tyr99 (PCaM) and the binding affinities of their respective calmodulin binding domains were tested. The six enzymes were: myosin light chain kinase (MLCK), 3'-5'-cyclic nucleotide phosphodiesterase (PDE), plasma membrane (PM) Ca2+-ATPase, Ca2+-CaM dependent protein phosphatase 2B (calcineurin), neuronal nitric oxide synthase (NOS) and type II Ca2+-calmodulin dependent protein kinase (CaM kinase II). In general, tyrosine phosphorylation led to an increase in the activatory properties of calmodulin (CaM). For plasma membrane (PM) Ca2+-ATPase, PDE and CaM kinase II, the primary effect was a decrease in the concentration at which half maximal velocity was attained (Kact). In contrast, for calcineurin and NOS phosphorylation of CaM significantly increased the Vmax. For MLCK, however, neither Vmax nor Kact were affected by tyrosine phosphorylation. Direct determination by fluorescence techniques of the dissociation constants with synthetic peptides corresponding to the CaM-binding domain of the six analysed enzymes revealed that phosphorylation of Tyr99 on CaM generally increased its affinity for the peptides.  相似文献   

11.
Lima L  Seabra A  Melo P  Cullimore J  Carvalho H 《Planta》2006,223(3):558-567
In this report we demonstrate that plastid glutamine synthetase of Medicago truncatula (MtGS2) is regulated by phosphorylation and 14-3-3 interaction. To investigate regulatory aspects of GS2 phosphorylation, we have produced non-phosphorylated GS2 proteins by expressing the plant cDNA in E. coli and performed in vitro phosphorylation assays. The recombinant isoenzyme was phosphorylated by calcium dependent kinase(s) present in leaves, roots and nodules. Using an (His)6-tagged 14-3-3 protein column affinity purification method, we demonstrate that phosphorylated GS2 interacts with 14-3-3 proteins and that this interaction leads to selective proteolysis of the plastid located isoform, resulting in inactivation of the isoenzyme. By site directed mutagenesis we were able to identify a GS2 phosphorylation site (Ser97) crucial for the interaction with 14-3-3s. Phosphorylation of this target residue can be functionally mimicked by replacing Ser97 by Asp, indicating that the introduction of a negative charge contributes to the interaction with 14-3-3 proteins and subsequent specific proteolysis. Furthermore, we document that plant extracts contain protease activity that cleaves the GS2 protein only when it is bound to 14-3-3 proteins following either phosphorylation or mimicking of phosphorylation by Ser97Asp.  相似文献   

12.
13.
The effect of phosphorylation in skeletal myosin light chain (LC2) on the actomyosin and acto-heavymeromyosin (HMM) ATPase activities was investigated in the presence or absence of regulatory proteins (tropomyosin-troponin complex). Phosphorylation in LC2 did not modulate the actin-myosin and actin-HMM interactions over a wide range of KCl concentrations from 30 to 150 mM without regulatory proteins. In the presence of regulatory proteins, phosphorylation in myosin LC2 enhanced the ATPase activity of actomyosin with calcium ions, but the removal of calcium ions made little difference in the ATPase activity between phosphorylated and dephosphorylated myosins. Ca2+-sensitivity of the regulated actomyosin was slightly changed by phosphorylation in myosin LC2. However, both the ATPase activity and Ca2+-sensitivity of the regulated acto-HMM were unaffected by phosphorylation in HMM LC2.  相似文献   

14.
Post-translational modification of proteins was examined during the life cycle of Myxococcus xanthus. A specific pattern of protein phosphorylation was observed in vegetative cells. When spore formation was induced by glycerol, significant changes in the pattern of protein phosphorylation were observed, including the phosphorylation of two membrane proteins. In in vitro experiments, the same membrane proteins were phosphorylated by ATP when the membrane preparation from cells treated with glycerol was used. Changes in the pattern of protein methylation were also observed during spore formation induced by glycerol or fruiting body formation. These results suggest that post-translational protein modification may be required for spore formation or fruiting body formation.  相似文献   

15.
cAMP-dependent protein kinase (PKA) can modulate synaptic transmission by acting directly on the neurotransmitter secretory machinery. Here, we identify one possible target: syntaphilin, which was identified as a molecular clamp that controls free syntaxin-1 and dynamin-1 availability and thereby regulates synaptic vesicle exocytosis and endocytosis. Deletion mutation and site-directed mutagenesis experiments pinpoint dominant PKA phosphorylation sites to serines 43 and 56. PKA phosphorylation of syntaphilin significantly decreases its binding to syntaxin-1A in vitro. A syntaphilin mutation of serine 43 to aspartic acid (S43D) shows similar effects on binding. To characterize in vivo phosphorylation events, we generated antisera against a peptide of syntaphilin containing a phosphorylated serine 43. Treatment of rat brain synaptosomes or syntaphilin-transfected HEK 293 cells with the cAMP analogue BIMPS induces in vivo phosphorylation of syntaphilin and inhibits its interaction with syntaxin-1 in neurons. To determine whether PKA phosphorylation of syntaphilin is involved in the regulation of Ca(2+)-dependent exocytosis, we investigated the effect of overexpression of syntaphilin and its S43D mutant on the regulated secretion of human growth hormone from PC12 cells. Although expression of wild type syntaphilin in PC12 cells exhibits significant reduction in high K(+)-induced human growth hormone release, the S43D mutant fails to inhibit exocytosis. Our data predict that syntaphilin could be a highly regulated molecule and that PKA phosphorylation could act as an "off" switch for syntaphilin, thus blocking its inhibitory function via the cAMP-dependent signal transduction pathway.  相似文献   

16.
We have determined the absolute phosphate content of microtubule-associated proteins (MAPs) and established that phosphorylation inhibits the actin filament cross-linking activity of MAPs and both of the major MAP components, MAP-2 and tau. Similar results were obtained with actin from rabbit muscle, hog brain, and Acanthamoeba castellanii. We used the endogenous phosphatases and kinases in hog brain microtubule protein to modulate MAP phosphate level before isolating heat-stable MAPs. MAPs isolated directly from twice-cycled microtubule protein contain 7.1 +/- 0.1 (S.E.) mol of phosphate/300,000 g protein. After incubating microtubule protein without ATP, MAPs, had 4.9 +/- 0.6 phosphates. After incubating microtubule protein with 1 mM ATP and 5 microM cAMP in 2 mM EGTA, MAPs had 8.6 +/- 0.5 phosphates but there was also exchange of three more [32P]phosphates from gamma-labeled ATP for preexisting MAP phosphate. Incubation of microtubule protein with ATP and cAMP in 5 mM CaCl2 resulted in exchange but no net addition of phosphate to MAPs. We fractionated the MAP preparations by gel filtration and obtained MAP-2 with 4.3 to 7.5 and tau with 1.5 to 2.2 mol of phosphate/mol of protein depending on how we treated the microtubule protein prior to MAP isolation. The actin filament cross-linking activity of whole MAPs, MAP-2, and tau depended on the MAP-phosphate content. In all cases, phosphorylation of MAPs inhibited actin filament cross-linking activity. The concentration of high phosphate MAPs required to form a high viscosity solution with actin filaments was 2 to 4 times more than that of low phosphate. MAPs. During incubation of microtubule protein with [gamma-32P]ATP, only MAP peptides are labeled. Treatment of these MAPs with either acid or alkaline phosphatase removes phosphate mainly from MAP-2, with an increase in actin filament cross-linking activity. Thus, both MAP phosphorylation and the effect of phosphorylation on actin cross-linking activity of MAPs are reversible.  相似文献   

17.
Hamartin and tuberin are products of the tumor suppressor genes, TSC1 and TSC2, respectively. When mutated, a characteristic spectrum of tumor-like growths develop resulting in the syndrome of tuberous sclerosis complex. The phenotypes associated with TSC1 and TSC2 mutations are largely indistinguishable suggesting a common biochemical pathway. Indeed, hamartin and tuberin have been shown to interact stably in vitro and in vivo. Factors that regulate their interaction are likely critical to the understanding of disease pathogenesis. In this study, we showed that tuberin is phosphorylated at serine and tyrosine residues in response to serum and other factors, and it undergoes serial phosphorylation that can be detected by differences in electrophoretic mobilities. A disease-related TSC2 mutation (Y1571H) nearly abolished tuberin phosphorylation when stimulated with pervanadate. Expression of this mutant tuberin caused a marked reduction in TSC1-TSC2 interaction compared with wild-type protein and significantly curtailed the growth inhibitory effects of tuberin when overexpressed in COS1 cells, consistent with a loss of function mutation. Examination of a second pathologic mutation, P1675L, revealed a similar relationship between limited phosphorylation and reduced interaction with hamartin. Our data show for the first time that 1) tuberin is phosphorylated at tyrosine and serine residues, 2) TSC1-TSC2 interaction is regulated by tuberin phosphorylation, and 3) defective phosphorylation of tuberin is associated with loss of its tumor suppressor activity. These findings suggest that phosphorylation may be a key regulatory mechanism controlling TSC1-TSC2 function.  相似文献   

18.
Polycystin-2 (PC2) trafficking has been proposed to be a result of the interaction of PIGEA14 with PC2 as a function of the phosphorylation state of PC2. Here, we investigated the interaction of PIGEA14 with the C-terminal part of polycystin-2 wild type (cPC2wt) and the pseudophosphorylated mutant (cPC2S812D) to first, quantify the binding affinity between cPC2 and PIGEA14 and second, to elucidate the influence of PC2 phosphorylation on PIGEA14 binding. Solid supported membranes composed of octanethiol/1,2-dioleoyl-sn-glycero-3-phosphocholine doped with the receptor lipid DOGS–NTA–Ni were used to attach PIGEA14 to the membrane via its hexahistidine tag. By means of the quartz crystal microbalance technique, binding affinities as well as kinetic constants of the interaction were extracted in a label-free manner by applying the scaled particle theory. The results show that the dissociation constant of cPC2 to PIGEA14 is in the 10 nM regime providing strong evidence of a very specific interaction of cPC2 with PIGEA14. The interaction of cPC2wt is twofold larger than that of cPC2S812D. The moderate higher binding affinity of cPC2wt to PIGEA14 is discussed in light of PC2 trafficking to the plasma membrane.  相似文献   

19.
Chromosomal protein HMG14 can be specifically phosphorylated by the cyclic AMP-dependent protein kinase at the N-terminus and by casein kinase 2 at the acidic C-terminus. Under the same conditions used for HMG14, HMG17 is not significantly phosphorylated by either of the two kinases. Further, we have studied the effect of phosphorylation by these kinases on the interaction of HMG14 with histone oligomers, using chemical cross-linking. Our results indicate that the phosphorylation of HMG14 by casein kinase 2 enhances its interaction with histone oligomers in free solution, whereas a minor effect was observed by phosphorylation with cyclic AMP-dependent protein kinase. In contrast, HMG17 does not interact at all with any histone oligomer in free solution under the conditions used. To gain insight into the possible effect that phosphorylation may play in vivo, the pattern of distribution among different chromatin fractions was analysed. It was found that, although phosphorylation of HMG14 by both kinases allowed reconstitution of HMG14 to chromatin, the patterns obtained showed some slight differences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号