首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breast cancers are the leading cancers among females. Diagnosis by fine needle aspiration cytology (FNAC) is the gold standard. The widely practiced screening method, mammography, suffers from high false positive results and repeated exposure to harmful ionizing radiation. As with all other cancers survival rates are shown to heavily depend on stage of the cancers (Stage 0, 95%; Stage IV, 75%). Hence development of more reliable screening and diagnosis methodology is of considerable interest in breast cancer management. Raman spectra of normal, benign, and malignant breast tissue show significant differences. Spectral differences between normal and diseased breast tissues are more pronounced than between the two pathological conditions, malignant and benign tissues. Based on spectral profiles, the presence of lipids (1078, 1267, 1301, 1440, 1654, 1746 cm(-1)) is indicated in normal tissue and proteins (stronger amide I, red shifted DeltaCH2, broad and strong amide III, 1002, 1033, 1530, 1556 cm(-1)) are found in benign and malignant tissues. The major differences between benign and malignant tissue spectra are malignant tissues seem to have an excess of lipids (1082, 1301, 1440 cm(-1)) and presence of excess proteins (amide I, amide III, red shifted DeltaCH2, 1033, 1002 cm(-1)) is indicated in benign spectra. The multivariate statistical tool, principal components analysis (PCA) is employed for developing discrimination methods. A score of factor 1 provided a reasonable classification of all three tissue types. The analysis is further fine-tuned by employing Mahalanobis distance and spectral residuals as discriminating parameters. This approach is tested both retrospectively and prospectively. The limit test, which provides the most unambiguous discrimination, is also considered and this approach clearly discriminated all three tissue types. These results further support the efficacy of Raman spectroscopic methods in discriminating normal and diseased breast tissues.  相似文献   

2.
Fourier transform infrared spectroscopic study of human breast normal and carcinomal tissues has been carried out. Some distinctive spectral differences which are mainly due to nucleic acids and proteins are observed between normal and carcinomal tissues. This method of analysis results in nearly 100% diagnostic accuracy of carcinomal tissues from normal tissues. The spectral patterns of well-differentiated carcinomal tissues exhibit marked heterogeneity, however that of poorly differentiated carcinomas demonstrate significant similarity. Apocrine, tubular, intraductal and mucinous carcinomas and invasive infiltrating ductal carcinomal tissues can be discriminated based on their characteristic spectra. The spectral differences confirm the possibility of using FTIR as an accurate and rapid technique to distinguish between normal and malignant breast tissues and classify breast carcinomas in different subtypes.  相似文献   

3.
Wu JG  Xu YZ  Sun CW  Soloway RD  Xu DF  Wu QG  Sun KH  Weng SF  Xu GX 《Biopolymers》2001,62(4):185-192
Oral tissue samples were studied using mid-IR fiber-optic attenuated total reflectance spectroscopy and other spectral techniques. The 1745 cm(-1) band, which is assigned to the ester group (C==O) vibration of triglycerides, is a reliable marker that is present in normal tissues but absent or a weak band in malignant oral tissues. Other bands such as C--H stretching bands and the amide bands are also helpful in distinguishing malignant tissues from normal tissues. Subtraction spectra confirmed the above conclusion. In addition, Raman spectroscopic measurements were in agreement with the results observed from FTIR spectra.  相似文献   

4.
Synchrotron radiation based-Fourier transform infrared microspectroscopy was used for preliminary investigation of the chemical composition and morphologies of the human substantia nigra of brain between normal and Parkinson's diseased tissues. The studies were carried out for thin tissue sections, focusing more particularly on nerve cell bodies, that are affected in Parkinson's disease (PD). The major spectral differences between normal (control) and PD tissues were identified at the following vibrational frequencies: 2930, 2850, 1655, 1380, 1236, 1173 and 1086 cm(-1). The infrared imaging of these biochemical markers show that for control cases the protein and nucleic acids functional groups (bands at: approximately 3300, approximately 3100, approximately 1655, approximately 1545, approximately 1240, approximately 1080 cm(-1)) are located mainly in the cell body. The spatial distribution of the band at 1740 cm(-1) (ester carbonyl stretching band) is quite dissimilar to the others, while it exhibits a minimal concentration in the cell body area. Contrarily, in PD samples, no clear evidence of variation of any of the vibrational fingerprint between cell body and the surrounding was noticed. Moreover, decrease of protein to lipid ratio as well as increase of amide I/amide II ratio were observed for PD case. The preliminary results strengthen the hypothesis that PD is a multietiological disorder. Moreover, the reported results clearly indicate that, in addition to a distinct visual observation, the diseased nerve cells exhibits change of their biochemical composition. It suggests that disturbances of normal functioning of SN neurons appear before their morphological atrophy.  相似文献   

5.
We have observed differences in the infrared spectra of viable fibroblast cells depending on whether the cells were in the exponential (proliferating) or plateau (nonproliferating) phase of growth. The spectral changes were observed even after correcting for cell number and volume, ruling out these trivial explanations. Several of the changes occurred for both transformed and normal cell lines and were greater for the normal cell line. The biochemical basis of the spectral changes was estimated by fitting the cell spectra to a linear superposition of spectra for the major biochemical components of mammalian cells (DNA, RNA, protein, lipids, and glycogen). The ratios of RNA/lipid and protein/lipid increased when the cells were in the exponential phase compared to the plateau phase of growth. The fits of cell spectra to individual biochemical components also demonstrated that DNA is a relatively minor spectroscopic component as would be expected biochemically. Contrary to other reports in the literature, our data demonstrate that determining DNA content or structure using Fourier transform infrared spectroscopy data is difficult due to the relatively small amount of DNA and the overlap of DNA bands with the absorption bands of other biochemical components.  相似文献   

6.
Optical spectroscopy methods are fast emerging as potential alternatives for early diagnosis of cancer. A Raman spectroscopy method for discrimination of normal and malignant oral tissues has been developed by us earlier. It is necessary to evaluate and establish the validity of the approach before it can be routinely used. In the present study, our Raman spectroscopy investigations are extended further to evaluate the efficacy of the technique to discriminate between normal, inflammatory, premalignant, and malignant conditions in oral tissue. Spectral profiles of normal, malignant, premalignant, and inflammatory conditions show pronounced differences between one another. Spectra of normal tissues can be attributed mainly to lipids whereas pathological tissue spectra are dominated by proteins. Principal components analysis (PCA) of the spectral data sets belonging to the four different categories showed that scores of factors differentiated between normal and all pathological conditions but gave only poor discrimination among the three pathological states. PCA combined with multiparameter limit tests allow match/mismatch criteria to be applied to test samples when pathologically certified calibration sets are available in each class. It is shown that by this method all the four tissue types could be discriminated and diagnosed correctly. The biochemical differences between normal and pathological conditions of oral tissue are also discussed from spectral differences of the different classes of spectra.  相似文献   

7.
A pilot Raman microspectroscopy study of formalin-fixed, paraffin-embedded, and deparaffinized sections from the same ovarian normal and malignant tissues was carried out. This approach was considered in order to evaluate the suitability of these ex vivo tissue handling procedures in discrimination as well as biochemical characterization. The spectra of formalin-fixed normal and malignant tissues exhibited no contamination due to formalin, which is indicated by the absence of strong formalin peaks; spectral features also show significant differences for normal and malignant tissues. The differences between spectral profiles of deparaffinized normal and malignant tissues are subtle and spectra show few residual sharp peaks of paraffin. Complete dominance of paraffin swamping signals from tissues was observed in the spectra of paraffin-embedded tissues. Principal components analysis (PCA), which was employed for discrimination of tissue type, provided good discrimination for formalin-fixed and paraffin-embedded tissue spectra. PCA of deparaffinized tissues resulted in a poor classification with significant overlap among the clusters. Thus, this study indicates that formalin fixation is the most suitable among the three procedures employed in the study. Significant differences between spectral profiles of normal and malignant formalin-fixed tissues can not only be exploited for discrimination but can also provide information on biochemical characteristics of the tissues. Deparaffinized tissues provide poor discrimination and information on tissue biochemistry is lost. Paraffin-embedded tissues may provide good discrimination, but predominance of paraffin in the spectra could jeopardize biochemical characterization. Prospectively, as a result of the better availability of paraffin-embedded tissues and problems associated with frozen sectioning of formalin-fixed tissues, the results of this study using paraffin-embedded tissues are very encouraging.  相似文献   

8.
There continues to be a significant clinical need for rapid and reliable intraoperative margin assessment during cancer surgery. Here we describe a portable, quantitative, optical fiber probe-based, spectroscopic tissue scanner designed for intraoperative diagnostic imaging of surgical margins, which we tested in a proof of concept study in human tissue for breast cancer diagnosis. The tissue scanner combines both diffuse reflectance spectroscopy (DRS) and intrinsic fluorescence spectroscopy (IFS), and has hyperspectral imaging capability, acquiring full DRS and IFS spectra for each scanned image pixel. Modeling of the DRS and IFS spectra yields quantitative parameters that reflect the metabolic, biochemical and morphological state of tissue, which are translated into disease diagnosis. The tissue scanner has high spatial resolution (0.25 mm) over a wide field of view (10 cm × 10 cm), and both high spectral resolution (2 nm) and high spectral contrast, readily distinguishing tissues with widely varying optical properties (bone, skeletal muscle, fat and connective tissue). Tissue-simulating phantom experiments confirm that the tissue scanner can quantitatively measure spectral parameters, such as hemoglobin concentration, in a physiologically relevant range with a high degree of accuracy (<5% error). Finally, studies using human breast tissues showed that the tissue scanner can detect small foci of breast cancer in a background of normal breast tissue. This tissue scanner is simpler in design, images a larger field of view at higher resolution and provides a more physically meaningful tissue diagnosis than other spectroscopic imaging systems currently reported in literatures. We believe this spectroscopic tissue scanner can provide real-time, comprehensive diagnostic imaging of surgical margins in excised tissues, overcoming the sampling limitation in current histopathology margin assessment. As such it is a significant step in the development of a platform technology for intraoperative management of cancer, a clinical problem that has been inadequately addressed to date.  相似文献   

9.
We have investigated mammary gland tissues of female rats treated with 7,12-dimethylbenz[a]anthracene in sesame oil by a near infrared (NIR) spectroscopy finding that the DNA and water contents in the cancerous tissues were larger than those in the normal tissues but that the lipid content in the former was less than that in the latter. With protein contents, however, little difference was observed between the two. Thus, we used a lipid band around 1725 nm (the first overtone of n-alkane) and a protein band around 2054 nm (a combination band of amide A and amide II of polypeptides) for a quantitative evaluation of malignant changes in the mammary gland tissues. The lipid/protein band intensity ratios were calculated from the spectra of the mammary glands in the control animals and those of the noncancerous and cancerous sites in the treated animals. The lipid/protein ratios in the control animals, in the noncancerous sites, and in the cancerous sites were 1.452 +/- 0.221 (n = 5), 0.728 +/- 0.069 (n = 5), and 0.362 +/- 0.060 (n = 5), respectively. These values were significantly different from each other (P < 0.001). The lipid changes observed by near-infrared (NIR) spectroscopy were confirmed by the results obtained from chemical methods for the evaluation of lipid levels in the same samples. Thus, our NIR spectroscopic method would be able not only to discriminate between cancerous and normal tissues but also to distinguish animals with cancers from normal animals. In addition, as the cancer grew, the lipid band intensity decreased, this band was shifted to higher wavelengths, and collagen peaks appeared in the tissues. These findings were supported by histological examinations of the cancerous and normal tissues. The present study indicates that NIR spectroscopy has high specificity and sensitivity in discriminating cancerous tissues from normal mammary glands in animals and it may offer potential for noninvasive, in vivo diagnosis of female breast cancer in the near future.  相似文献   

10.
11.
Aortic aneurisms are frequently asymptomatic but can induce dramatic complications. The diagnosis is only based on the aortic diameter and not on a structural and compositional basis. In this preliminary study, we propose infrared microspectroscopy to nondestructively probe normal and aneurismal human aortas. Spectra from 19 human ascending aortic biopsies (10 normal and 9 aneurismal) were acquired using infrared microspectroscopy. A 1500 x 150 microm(2) area of each 7-microm thick cryosection was investigated using a 30-microm spatial resolution with a total of about 200 spectra per sample. Spectral differences between normal and aneurismal tissues were mainly located in spectral regions related to proteins, such as elastin and collagen, and proteoglycans (1750-1000 cm(-1)). Tissue heterogeneity and sample classification have been evaluated using hierarchical cluster analysis of individual or mean spectra and their second derivative. Using spectral range related to proteins, 100% of good classification was obtained whereas the proteoglycan spectral range was less discriminant. This in vitro study demonstrates the potential of such technique to differentiate between normal and aneurismal aortas using selected spectral ranges. Future investigations will be focused on these specific spectral regions to determine the role of elastin and collagen in the discrimination of normal and pathological aortas.  相似文献   

12.
Bladder Cancer Associated Protein (BLCAP, formerly Bc10), was identified by our laboratory as being down-regulated in bladder cancer with progression. BLCAP is ubiquitously expressed in different tissues, and several studies have found differential expression of BLCAP in various cancer types, such as cervical and renal cancer, as well as human tongue carcinoma and osteosarcoma. Here we report the first study of the expression patterns of BLCAP in breast tissue. We analyzed by immunohistochemistry tissue sections of normal and malignant specimens collected from 123 clinical high-risk breast cancer patients within the Danish Center for Translational Breast Cancer Research (DCTB) prospective study dataset. The staining pattern, the distribution of the immunostaining, and its intensity were studied in detail. We observed weak immunoreactivity for BLCAP in mammary epithelial cells, almost exclusively localizing to the cytoplasm and found that levels of expression of BLCAP were generally higher in malignant cells as compared to normal cells. Quantitative IHC analysis of BLCAP expression in breast tissues confirmed this differential BLCAP expression in tumor cells, and we could establish, in a 62-patient sample matched cohort, that immunostaining intensity for BLCAP was increased in tumors relative to normal tissue, in more than 45% of the cases examined, indicating that BLCAP may be of value as a marker for breast cancer. We also analyzed BLCAP expression and prognostic value using a set of tissue microarrays comprising an independent cohort of 2,197 breast cancer patients for which we had follow-up clinical information.  相似文献   

13.
Hastings G  Wang R  Krug P  Katz D  Hilliard J 《Biopolymers》2008,89(11):921-930
Infrared spectroscopy of biological cell monolayers grown on surfaces is a poorly developed field. This is unfortunate because these monolayers have potential as biological sensors. Here we have used infrared microscopy, in both transmission and transflection geometries, to study air-dried Vero cell monolayers. Using both methods allows one to distinguish sampling artefactual features from real sample spectral features. In transflection experiments, amide I/II absorption bands down-shift 9/4 cm(-1), respectively, relative to the corresponding bands in transmission experiments. In all other spectral regions no pronounced frequency differences in spectral bands in transmission and transflection experiments were observed. Transmission and transflection infrared microscopy were used to obtain infrared spectra for unfixed and acetone- or formalin-fixed Vero cell monolayers. Formalin-fixed monolayers display spectra that are very similar to that obtained using unfixed cells. However, acetone fixation leads to considerable spectral modifications. For unfixed and formalin-fixed monolayers, a distinct band is observed at 1740 cm(-1). This band is absent in spectra obtained using acetone-fixed monolayers. The 1740 cm(-1) band is associated with cellular ester lipids. In support of this hypothesis, two bands at 2925 and 2854 cm(-1) are also found to disappear upon acetone fixation. These bands are associated with C--H modes of the cellular lipids. Acetone fixation also leads to modification of protein amide I and II absorption bands. This may be expected as acetone causes coagulation of soluble cellular proteins. Other spectral changes associated with acetone or formalin fixation in the 1400-800 cm(-1) region are discussed. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 921-930, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

14.
The aim of this study was to understand and correlate spectral features and biochemical changes in normal, fibroadenoma and infiltrating ductal carcinoma of breast tissues using Raman spectra that were part of the spectroscopic models developed and evaluated by us earlier. Spectra were subjected to curve fitting and intensities plots of resultant curve resolved bands were computed. This study has revealed that fat (1301 and 1440 cm?1), collagen (1246, 1271, and 1671 cm?1) and DNA (1340 and 1480 cm?1) bands have strong presence in normal, benign and malignant breast tissues, respectively. Intensity plots of various combinations of curved resolved bands were also explored to classify tissue types. Combinations of fat (1301 cm?1) and collagen (1246, 1271, and 1671 cm?1)/amide I; DNA (1340 cm?1) and fat (1301 cm?1); collagen (1271 cm?1) and DNA (1480 cm?1) are found to be good discriminating parameters. These results are in tune with findings of earlier studies carried out on western population as well as our molecular biological understanding of normal tissues and neoplastic processes. Thus the finding of this study further demonstrates the efficacy Raman spectroscopic approaches in diagnostic applications as well as in understanding molecular phenomenon in breast cancers. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 539–546, 2009. This article was originally published online as an accepted preprint. The “Published Online”date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
Intratumoral aromatase is a potential therapeutic target for the treatment of postmenopausal estrogen-dependent breast cancers. Therefore, reliable methods should be developed for routine application for the detection of intratumoral aromatase. A multi-center collaborative group has been established to generate and validate new aromatase monoclonal antibodies (MAbs). A recombinant GST–aromatase fusion protein was expressed in baculovirus and the purified protein was used for immunization of mice either as a native or formalin-fixed antigen. Hybridomas were generated using standard techniques and screened biochemically prior to immunohistochemistry (IHC) evaluation in human placenta, ovary and breast cancer tissues. Twenty-three MAbs selected by biochemical assays were further evaluated by IHC of paraffin-embedded tissue sections including normal ovary, and placenta, and a small series of 10 breast carcinomas. Of the 23 MAbs, 2 (clones 677 and F2) were determined to specifically stain cell types known to express aromatase in normal tissues. In breast carcinomas staining of malignant epithelium, adipose tissue, normal/benign and stromal compartments was detected. IHC was performed and independently evaluated by three pathologists (HS, TJA and SGS), each using the same evaluation criteria for staining intensity and proportion of immunopositive cells. With these two MAbs, interpathologist and intralaboratory variations were minimal in comparison with differences which could be detected between tissue specimens and antibodies.  相似文献   

16.
Herein, a technique to analyze air‐dried kidney tissue impression smears by means of attenuated total reflection infrared (ATR‐IR) spectroscopy is presented. Spectral tumor markers—absorption bands of glycogen—are identified in the ATR‐IR spectra of the kidney tissue smear samples. Thin kidney tissue cryo‐sections currently used for IR spectroscopic analysis lack such spectral markers as the sample preparation causes irreversible molecular changes in the tissue. In particular, freeze‐thaw cycle results in degradation of the glycogen and reduction or complete dissolution of its content. Supervised spectral classification was applied to the recorded spectra of the smears and the test spectra were classified with a high accuracy of 92% for normal tissue and 94% for tumor tissue, respectively. For further development, we propose that combination of the method with optical fiber ATR probes could potentially be used for rapid real‐time intra‐operative tissue analysis without interfering with either the established protocols of pathological examination or the ordinary workflow of operating surgeon. Such approach could ensure easier transition of the method to clinical applications where it may complement the results of gold standard histopathology examination and aid in more precise resection of kidney tumors.   相似文献   

17.
18.
Optical histopathology is fast emerging as a potential tool in cancer diagnosis. Fresh tissues in saline are ideal samples for optical histopathology. However, evaluation of suitability of ex vivo handled tissues is necessitated because of severe constraints in sample procurement, handling, and other associated problems with fresh tissues. Among these methods, formalin-fixed samples are shown to be suitable for optical histopathology. However, it is necessary to further evaluate this method from the point of view discriminating tissues with minute biochemical variations. A pilot Raman and Fourier transform infrared (FTIR) microspectroscopic studies of formalin-fixed tissues normal, malignant, and after-2-fractions of radiotherapy from the same malignant cervix subjects were carried out, with an aim to explore the feasibility of discriminating these tissues, especially the tissues after-2-fractions of radiotherapy from other two groups. Raman and FTIR spectra exhibit large differences for normal and malignant tissues and subtle differences are seen between malignant and after-2-fractions of radiotherapy tissues. Spectral data were analyzed by principal component analysis (PCA) and it provided good discrimination of normal and malignant tissues. PCA of data of three tissues, normal, malignant, and 2-fractions after radiotherapy, gave two clusters corresponding to normal and malignant + after-2-fractions of radiotherapy tissues. A second step of PCA was required to achieve discrimination between malignant and after-2-fractions of radiotherapy tissues. Hence, this study not only further supports the use of formalin-fixed tissues in optical histopathology, especially from Raman spectroscopy point of view, it also indicates feasibility of discriminating tissues with minute biochemical differences such as malignant and after-2-fractions of radiotherapy.  相似文献   

19.
A novel concept of spectrally resolved morphometry for histological specimens was developed using light microscopy combined with spectrally resolved imaging. The spectroscopic characteristics of rat hepatocytes stained by Haematoxylin and Eosin, Romanowsky–Giemsa, periodic acid–Schiff and Masson's trichrome were assessed. Light intensity in the range 450–850 nm was recorded from 10000 pixels of nuclear domains of each stained cell and represented as light transmittance spectra and optical density. In order to identify spectral shifts caused by stain– macromolecule interactions, we compared the spectra of individual stain components with those of DNA and bovine serum albumin. Chromatin and interchromatin areas were classified spectrally using a chosen spectral library followed by morphometric calculations of nuclear domains for each staining method. The spectral fingerprints of Masson's trichrome stain distinguished the nucleolus from the rest of the nuclear c hromatin, enabling the demarcation and calculation of the nucleolar area. Spectrally resolved imaging of human hepatocytes stained by Masson's trichrome stain revealed marked differences between the nucleolar area in normal human hepatocytes compared with hepatocellular carcinoma. Masson's trichrome stain also distinguished the nucleolar area in human breast carcinoma cells and keratinocytes.  相似文献   

20.
Autofluorescence from intracellular chromophores upon illumination of cells by monochromatic light has been studied towards the development of novel noninvasive and sensitive technology for the early detection of cancer. To investigate the relationship between biochemical and morphological changes underlying malignant disease and resulting fluorescence spectra, an in vitro model system of a paired normal and malignant murine fibroblasts cell lines, differing in cancer-associated H-ras expression was employed. A comparison of fluorescence excitation and emission spectra of proliferative cells revealed that fluorescence intensity of malignant cells was significantly less than that of normal cells upon excitation at 290 nm. Fluorescence of both cell lines decreased with decreasing cell concentration, but at each concentration, normal cells had higher fluorescence intensity than malignant cells. Similar differences between the cell lines were observed when brought to quiescence or at stationary phase. Results suggested that the chromophore contributing most significantly to these spectra is tryptophan and its moieties in proteins. This model system demonstrates the specific contribution of H-ras to subcellular chromophores, resulting in a significant difference in their autofluorescence intensity, and implies the potential use of the technique for cancer detection. This model system is potent for analysis of the contribution of other oncogenes and their combinations towards spectral detection of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号