首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Uptake rates of ammonium, nitrate and urea were measured during the EPOS leg 1 cruise to the Weddell Sea in October–November 1988 using the isotope 15N. Nitrate was the most important nitrogen source both for ice algae (f-ratio 0.88) and for phytoplankton in the water column (f-ratio 0.85). Indications of a gradual decrease in % new production with time were found in the outer marginal ice zone. Nitrogen uptake rates in ice algae from the sub-ice assemblage were light-limited at in situ irradiances. Significant regeneration of ammonium was found in ice algal samples only.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

3.
Physical, biogeochemical and photosynthetic parameters were measured in sea ice brine and ice core bottom samples in the north-western Weddell Sea during early spring 2006. Sea ice brines collected from sackholes were characterised by cold temperatures (range −7.4 to −3.8°C), high salinities (range 61.4–118.0), and partly elevated dissolved oxygen concentrations (range 159–413 μmol kg−1) when compared to surface seawater. Nitrate (range 0.5–76.3 μmol kg−1), dissolved inorganic phosphate (range 0.2–7.0 μmol kg−1) and silicic acid (range 74–285 μmol kg−1) concentrations in sea ice brines were depleted when compared to surface seawater. In contrast, NH4 + (range 0.3–23.0 μmol kg−1) and dissolved organic carbon (range 140–707 μmol kg−1) were enriched in the sea ice brines. Ice core bottom samples exhibited moderate temperatures and brine salinities, but high algal biomass (4.9–435.5 μg Chl a l−1 brine) and silicic acid depletion. Pulse amplitude modulated fluorometry was used for the determination of the photosynthetic parameters F v/F m, α, rETRmax and E k. The maximum quantum yield of photosystem II, F v/F m, ranged from 0.101 to 0.500 (average 0.284 ± 0.132) and 0.235 to 0.595 (average 0.368 ± 0.127) in the sea ice internal and bottom communities, respectively. The fluorometric measurements indicated medium ice algal photosynthetic activity both in the internal and bottom communities of the sea ice. An observed lack of correlation between biogeochemical and photosynthetic parameters was most likely due to temporally and spatially decoupled physical and biological processes in the sea ice brine channel system, and was also influenced by the temporal and spatial resolution of applied sampling techniques.  相似文献   

4.
Pack ice around Svalbard was sampled during the expedition ARK XIX/1 of RV “Polarstern” (March–April 2003) in order to determine environmental conditions, species composition and abundances of sea-ice algae and heterotrophic protists during late winter. As compared to other seasons, species diversity of algae (total 40 taxa) was not low, but abundances (5,000–448,000 cells l−1) were lower by one to two orders of magnitude. Layers of high algal abundances were observed both at the bottom and in the ice interior. Inorganic nutrient concentrations (NO2, NO3, PO4, Si(OH)4) within the ice were mostly higher than during other seasons, and enriched compared to seawater by enrichment indices of 1.6–24.6 (corrected for losses through the desalination process). Thus, the survival of algae in Arctic pack ice was not limited by nutrients at the beginning of the productive season. Based on less-detailed physical data, light was considered as the most probable factor controlling the onset of the spring ice-algal bloom in the lower part of the ice, while low temperatures and salinities inhibit algal growth in the upper part of the ice at the end of the winter. Incorporation of ice algae probably took place during the entire freezing period. Possible overwintering strategies during the dark period, such as facultative heterotrophy, energy reserves, and resting spores are discussed.  相似文献   

5.
Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [3H]leucine as substrate, was compared with incorporation rates of [3H]leucine into proteins. Relation of [3H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 105 ml–1, but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3–0.4 days–1. Total cell concentration of bacteria in 400 m depth was 6.6 × 104 ml–1. Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml–1, exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3–5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.  相似文献   

6.
Summary Phytoplankton biomass and distribution of major phytoplankton groups were investigated in relation to sea ice conditions, hydrography and nutrients along three north-south transects in the north western Weddell Sea in early spring 1988 during the EPOS Study (European Polarstern Study), Leg 1. Three different zones along the transects could be distinguished: 1) the Open Water Zone (OWZ) from 58° to 60°S with high chlorophyll a concentrations up to 3.5 g l–1; 2) the Marginal Ice Zone (MIZ) from 60° to about 62.5° with chlorophyll a concentrations between 0.1 and 0.3 g l–1, and 3) the closed pack-ice zone (CPI) from 62.5° to 63.2°S with chlorophyll a concentrations below 0.1 gl–1. Nutrient concentrations increased towards the south showing winter values under the closed pack-ice. Centric diatoms such as Thalassiosira gravida and Chaetoceros neglectum forming large colonies dominated the phytoplankton assemblage in terms of biomass in open water together with large, long chain forming, pennate diatoms, whereas small pennate diatoms such as Nitzschia spp., and nanoflagellates prevailed in ice covered areas. Fairly low concentrations of phytoplankton cells were encountered at the southernmost stations and many empty diatom frustules were found in the samples. The enhanced phytoplankton biomass in the Weddell-Scotia-Confluence area is achieved through sea ice melting in the frontal zone of two different water masses, the Weddell and the Scotia Sea surface waters.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

7.
Summary Pack ice surrounding Antarctica supports rich and varied populations of microbial organisms. As part of the Antarctic Marine Ecosystem Research in the Ice Edge Zone (AMERIEZ) studies, we have examined this community during the late spring, autumn, and winter. Although organisms are found throughout the ice, the richest concentrations often occur in the surface layer. The ice flora consists of diatoms and flagellates. Chrysophyte cysts (archaeomonads) of unknown affinity and dinoflagellate cysts are abundant and may serve as overwintering stages in ice. The ice fauna includes a variety of heterotrophic flagellates, ciliates, and micrometazoa. The abundance of heterotrophs indicates an active food web within the ice community. Ice may serve as a temporary habitat or refuge for many of the microbial forms and some of these appear to provide an inoculum for planktonic populations when ice melts. Larger consumers, such as copepods and the Antarctic krill, Euphausia superba are often found on the underside of ice floes and within weathered floes. The importance of the ice biota as a food resource for these pelagic consumers is unknown.  相似文献   

8.
The factors controlling phytoplankton bloom development in the marginal ice zone of the northwestern Weddell Sea were investigated during the EPOS (Leg 2) expedition (1988). Measurements were made of physical and chemical processes and biological activities associated with the process of ice-melting and their controlling variables particularly light limitation mediated by vertical stability and ice-cover, trace metal deficiency and grazing pressure. The combined observations and process studies show that the initiation of the phytoplankton bloom, dominated by nanoplanktonic species, was determined by the physical processes operating in the marginal ice zone at the time of ice melting. The additional effects of grazing pressure by protozoa and deep mixing appeared responsible for a rather moderate phytoplankton biomass (4 mg Chla m–3) with a relatively narrow geographical extent (100–150 km). The rôle of trace constituents, in particular iron, was minor. The importance of each factor during the seasonal development of the ice-edge phytoplankton bloom was studied through modelling of reasonable scenarios of meteorological and biological forcing, making use of a one-dimensional coupled physicalbiological model. The analysis of simulations clearly shows that wind mixing events — their duration, strength and frequency — determines both the distance from the iceedge of the sea ice associated phytoplankton bloom and the occurrence in the ice-free area of secondary phytoplankton blooms during the summer period. The magnitude and extent of the ice-edge bloom is determined by the combined action of meteorological conditions and grazing pressure. In the absence of grazers, a maximum ice-edge bloom of 7.5 mg Chla m–3 is predicted under averaged wind conditions of 8 m s–1. Extreme constant wind scenarios (4–14 m s–1) combined with realistic grazing pressure predict maximum ice-edge phytoplankton concentrations varying from 11.5 to 2 mg Chla m–3. Persistent violent wind conditions ( 14 m s–1) are shown to prevent blooms from developing even during the brightest period of the year.  相似文献   

9.
Summary The activity of the respiratory electron transport system (ETS) of the microplankton (<240 m size) was measured in the Northern Weddell Sea during EPOS 1, in the Close Pack Ice (CPI), and in the ice edge (Outer and Inner Marginal Zones, OMIZ and IMIZ). During early spring the activity increased with time and in the pack ice-open water direction. The temporal trend was more obvious than the spatial one. ETS activity ranged from 0.01 to 1.25 ml O2 m–3 h–1 under the ice and from 0.1 to 1.6 ml O2 m–3 h–1 in the open water at the ice edge. Depth-integrated ETS activity in the upper 300 m ranged from 13 to 130 ml O2 m–2h–1. 60% to 80% of the activity took place above 100 m in the OMIZ in the prebloom conditions at the end of the cruise. ETS/Chl a ratios showed the importance of microheterotrophs under the ice, versus a greater phytoplankton dominance in the ice edge-open water zone. The carbon-specific activity reached a maximum (0.43 day–1) in the innermost zone of the CPI where bacteria dominated. Respiratory activity under the ice is important in producing the oxygen deficit observed, due to the negative balance between photosynthesis and respiration. The ETS activity was at the lower range of that found in the region in summer and is comparable to that measured in other oligotrophic, stratified systems in oceanic areas.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

10.
Summary Sea ice cores were obtained from eleven fast ice stations and one floe in the Weddell Sea, Antarctica in January–February 1985. All cores from the north eastern part of the Weddell Sea contained numerous living and dead planktic foraminifers of the species Neogloboquadrina pachyderma (Ehrenberg), while cores drilled in southern parts were barren of foraminifers with one exception. Foraminiferal abundances were variable, with numbers up to 320 individuals per liter melted sea ice. Distribution of foraminifers appears to be patchy, parallel cores taken less than 30 cm apart contained numbers which varied considerably. On the other hand, three cores taken on a transect each more than 3 km apart showed striking similarities. In general, small dead tests were found in the upper parts of the sea ice cores while large living individuals mainly occurred in lower sections. Abundant diatoms probably serve as a food source for the foraminifers. Correlation of foraminiferal abundance with salinity, chlorophyll and nutrient profiles are inconsistent. The possible mechanism of incorporation of N. pachyderma into the ice is discussed.  相似文献   

11.
Ice cores were collected between 10.03.93 and 15.03.93 along a 200 m profile on a large ice floe in Fram Strait. The ice was typical of Arctic multi-year ice, having a mean thickness along the profile of 2.56 ±0.53 m. It consisted mostly of columnar ice (83%) grown through congelation of seawater at the ice bottom, and the salinity profiles were characterized by a linear increase from 0 psu at the top to values ranging between 3 and 5 psu at depth. Distributions of dissolved organic carbon (DOC) and nitrogen (DON) and major nutrients were compared with ice texture, salinity and chlorophyll a. DOC, DON, dissolved inorganic nitrogen (DIN), NH4 + and NO2 were present in concentrations in excess of that predicted by dilution curves derived from Arctic surface water values. Only NO3 was depleted, although not exhausted. High DOC and DON values in conjunction with high NH4 + levels indicated that a significant proportion of the dissolved organic matter (DOM) was a result of decomposition/grazing of ice algae and/or detritus. The combination of high NH4 + and NO2 points to regeneration of nitrogen compounds. There was no significant correlation between DOC and Chl a in contrast to DON, which had a positively significant correlation with both salinity and Chl a, and the distribution of DOM in the cores might best be described as a combination of both physical and biological processes. There was no correlation between DOC and DON suggesting an uncoupling of DOC and DON dynamics in multi year ice.  相似文献   

12.
During the austral summer of 1995, distributions of phytoplankton biomass (as chlorophyll a), primary production, and nutrient concentrations along two north-south transects in the marginal ice zone of the northwestern Weddell Sea were examined as part of the 8th Korean Antarctic Research Program. An extensive phytoplankton bloom, ranging from 1.6 to 11.2 mg m−3 in surface chlorophyll a concentration, was encountered along the eastern transect and extended ca. 180 km north of the ice edge. The spatial extent of the bloom was closely related to the density field induced by the input of meltwater from the retreating sea ice. However, the extent (ca. 200 km) of the phytoplankton bloom along the western transect exceeded the meltwater-influenced zone (ca. 18 km). The extensive bloom along the western transect was more closely related to local hydrography than to the proximity of the ice edge and the resulting meltwater-induced stability of the upper water column. In addition, the marginal ice zone on the western transect was characterized by a deep, high phytoplankton biomass (up to 8 mg Chl a m−3) extending to 100-m depth, and the decreased nutrient concentration, which was probably caused by passive sinking from the upper euphotic zone and in situ growth. Despite the low bloom intensity relative to the marginal ice zone in both of the transects, mean primary productivity (2.6 g C m−2 day−1) in shelf waters corresponding to the northern side of the western transect was as high as in the marginal ice zone (2.1 g C m−2 day−1), and was 4.8 times greater than that in open waters, suggesting that shelf waters are as highly productive as the marginal ice zone. A comparison between the historical productivity data and our data also shows that the most productive regions in the Southern Ocean are shelf waters and the marginal ice zone, with emerging evidence of frontal regions as another major productive site. Accepted: 27 September 1998  相似文献   

13.
Copepods in platelet-ice layers underlying fast ice and in the water column below were studied at Drescher Inlet, eastern Weddell Sea in February 1998. Three copepod species were found: Drescheriella glacialis and Paralabidocera antarctica occurred in platelet-ice layers, while Stephos longipes was only present in the water column. The distribution of all species varied considerably between station and depth. D. glacialis dominated the platelet-ice community and occurred at all five platelet-ice sampling sites, except one, with numbers of up to 26 ind. l–1. In contrast, P. antarctica was only found in low numbers (up to 2 ind. l–1) at one site. The total copepod abundance in the platelet ice was not associated with algal biomass, although it was strongly correlated with high ammonium concentrations (up to 9 M) in the interstitial water between the platelets. This is the first indirect evidence to support the hypothesis that zooplankton excretion can partly account for the high ammonium values often found in platelet-ice layers.  相似文献   

14.
Summary During the European Polarstern Study (EPOS leg 1 and leg 2) measurements of temperature, salinity, inorganic nutrients, chlorophyll-a, oxygen and total inorganic carbon dioxide were performed from October to January 1988–1989 in north-south sections at 47–49 °E in the NW Weddell Sea from approximately 58 °S to 63 °S (Hempel 1989; Hempel et al. 1989). In order to explain parts of the obtained data, a time-dependent ecological model was constructed by Svansson (1991). He found that a moderate mixing with a constant diffusion coefficient from sea surface downwards resulted in good agreement between computed and measured chlorophyll. In this paper we introduce the gas fluxes, mainly oxygen but also carbon dioxide, into the model work. It turns out that air-sea fluxes are necessary to explain the vertical oxygen distribution. The annual development of chlorophyll, phosphate, oxygen and total inorganic carbon dioxide are computed. Hours of day-light, losses and the eddy diffusion coefficient are allowed to vary during the year with the condition that the mean total chlorophyll at 14 selected leg 1 stations was nearly double the magnitude of that of 18 selected leg 2 stations. This yields variations consistent with the observations. Different steady-state solutions after 91 days are also tested to show effects of one selected variation at a time, for example the eddy diffusion coefficient or the loss rate. The oxygen air-sea flux, of about 90 mmol m–2 day–1 in the time variable model computation, is compared to estimated fluxes by a gas transfer formula. The formula used gives a flux which is about 5 times smaller than the model flux. Some of the 91 days solutions give results of fluxes which are less than 90 mmol m–2 day–1 but still higher than the transfer formula result. Fluxes of total inorganic carbon dioxide in the model computation are always directed from air to sea.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

15.
Summary A seabird and mammal census was carried out in the north-eastern Weddell Sea during the austral winter of 1986. The German research icebreaker Polarstern operated in heavy pack ice along the Greenwich Meridian between the northern sea ice boundary and the Antarctic coast. Crabeater seals (Lobodon carcinophagus), minke whales (Balaenoptera acutorostrata), Adélie penguins (Pygoscelis adeliae), Antarctic petrels (Thalassoica antarctica) and snow petrels (Pagodroma nivea) were found to be more abundant in the vicinity of the submarine Maud Rise, about 700 km north of the continental margin, than in other areas of substantial ice cover traversed during that cruise. The aggregations of birds and mammals are expected to reflect aggregations of their principal food, krill (Euphausia superba) wintering underneath the ice cover. The distribution pattern of krill predators coincides with the course of a warm water belt upwelling near Maud Rise. This upwelling could induce local ice melting which in turn may result in an increased release of sea ice algae.  相似文献   

16.
We report silicon isotopic composition (δ30Si vs. NBS28) in Arctic sea ice, based on sampling of silicic acid from both brine and seawater in a small Greenlandic bay in March 2010. Our measurements show that just before the productive period, δ30Si of sea-ice brine similar to δ30Si of the underlying seawater. Hence, there is no Si isotopic fractionation during sea-ice growth by physical processes such as brine convection. This finding brings credit and support to the conclusions of previous work on the impact of biogenic processes on sea ice δ30Si: any δ30Si change results from a combination of biogenic silica production and dissolution. We use this insight to interpret data from an earlier study of sea-ice δ30Si in Antarctic pack ice that show a large accumulation of biogenic silica. Based on these data, we estimate a significant contribution of biogenic silica dissolution (D) to production (P), with a D:P ratio between 0.4 and 0.9. This finding has significant implications for the understanding and parameterization of the sea ice Si-biogeochemical cycle, i.e. previous studies assumed little or no biogenic silica dissolution in sea ice.  相似文献   

17.
An array of four sediment traps and one current meter was deployed under a well-developed platelet layer for 15 days in the Drescher Inlet in the Riiser Larsen ice shelf, in February 1998. Traps were deployed at 10 m (just under the platelet layer), 112 m (above the thermocline), 230 m (below thermocline) and 360 m (close to sea floor). There was a substantial flux of particulate organic material out of the platelet layer, although higher amounts were collected in the traps either side of the thermocline. Material collected was predominantly composed of faecal pellets containing diatom species growing within the platelet layer. The size classes of these pellets suggest they derive from protists grazing rather than from larger metazoans. Sediment trap material was analysed for particulate organic carbon/nitrogen/phosphorus (POC/PON/POP) and '13CPOC (carbon isotopic composition of POC). These were compared with organic matter in the overlying platelet layer and the water column. In turn, the biogeochemistry of the platelet layer and water column was investigated and the organic matter characteristics related to inorganic nutrients (nitrate, nitrite, ammonium, silicate, phosphate), dissolved organic carbon/nitrogen (DOC/DON), pH, dissolved inorganic carbon (DIC), oxygen and '13CDIC (carbon isotopic composition dissolved inorganic carbon).  相似文献   

18.
K. Kivi  H. Kuosa 《Polar Biology》1994,14(6):389-399
Microbial communities in the water column and sea ice were studied during the EPOS-cruise on R/V Polarstern in the western Weddell Sea in late winter (October–November 1988). Samples were taken from four transects from heavy pack-ice to open water. The results indicated the important role of protozoans especially in the ice-edge area. Heterotrophic nanofiagellates, dinoflagellates, ciliates and sarcodines showed significant positive correlations with chlorophyll a. Autotrophic picoplankton and autotrophic flagellates, which were probably motile zooids of Phaeocystis pouchetii (up to 3×106 cells 1–1), were most abundant in the areas of low or medium chlorophyll a concentration. Sea ice contained high numbers of heterotrophic organisms, and the distribution of the different groups showed distinct vertical zonation. At two sites, the microbial assembly beneath the ice was clearly influenced by communities from the melting ice.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

19.
This study documents, for the first time, the abundance and species composition of protist assemblages in Arctic sea ice during the dark winter period. Lack of knowledge of sea-ice assemblages during the dark period has left questions about the retention and survival of protist species that initiate the ice algal bloom. Sea-ice and surface water samples were collected between December 27, 2007 and January 31, 2008 within the Cape Bathurst flaw lead, Canadian Beaufort Sea. Samples were analyzed for protist identification and counts, chlorophyll (chl) a, and total particulate carbon and nitrogen concentrations. Sea-ice chl a concentrations (max. 0.27 μg l−1) and total protist abundances (max. 4 × 103 cells l−1) were very low, indicating minimal retention of protists in the ice during winter. The diversity of winter ice protists (134 taxa) was comparable to spring ice assemblages. Pennate diatoms dominated the winter protist assemblage numerically (averaging 77% of total protist abundances), with Nitzschia frigida being the most abundant species. Only 56 taxa were identified in surface waters, where dinoflagellates were the dominant group. Our results indicate that differences in the timing of ice formation may have a greater impact on the abundance than structure of protist assemblages present in winter sea ice and at the onset of the spring ice algal bloom.  相似文献   

20.
Despite being an essential part of the marine food web during periods of ice cover, sea ice algae have not been studied in any detail in the Bering Sea. In this study, we investigated the diversity, abundance and ultimate fate of ice algae in the Bering Sea using sea ice, water and sub-ice sediment trap samples collected during two spring periods in 2008 and 2009: ice growth (March–mid-April) and ice melt (mid-April–May). The total ice algal species inventory included 68 species, dominated by typical Arctic ice algal diatom taxa. Only three species were determined from the water samples; we interpret the strong overlap in species as seeding of algal cells from the sea ice. Algal abundances in the ice exceeded 107 cells l?1 in the bottom 2-cm layer and were on average three orders of magnitude higher than in the water column. The vertical flux of algal cells beneath the ice during the period of ice melt (>108 cells m?2 day?1) exceeded export during the ice growth period by one order of magnitude; the vertical flux during both periods can only be sustained by the release of algae from the ice. Differences in the relative species proportions of algae among sample types indicated that the fate of the released ice algae was species specific, with some taxa contributing to seeding in the water column, while other taxa were preferentially exported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号