首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclin D-Cdk4/6 and cyclin A/E-Cdk2 are suggested to be involved in phosphorylation of the retinoblastoma protein (pRB) during the G1/S transition of the cell cycle. However, it is unclear why several Cdks are needed and how they are different from one another. We found that the consensus amino acid sequence for phosphorylation by cyclin D1-Cdk4 is different from S/T-P-X-K/R, which is the consensus sequence for phosphorylation by cyclin A/E-Cdk2 using various synthetic peptides as substrates. Cyclin D1-Cdk4 efficiently phosphorylated the G1 peptide, RPPTLS780PIPHIPR that contained a part of the sequence of pRB, while cyclins E-Cdk2 and A-Cdk2 did not. To determine the phosphorylation state of pRB in vitro and in vivo, we raised the specific antibody against phospho-Ser780 in pRB. We confirmed that cyclin D1-Cdk4, but not cyclin E-Cdk2, phosphorylated Ser780 in recombinant pRB. The Ser780 in pRB was phosphorylated in the G1 phase in a cell cycle-dependent manner. Furthermore, we found that pRB phosphorylated at Ser780 cannot bind to E2F-1 in vivo. Our data show that cyclin D1-Cdk4 and cyclin A/E Cdk2 phosphorylate different sites of pRB in vivo.  相似文献   

2.
The retinoblastoma protein Rb is critical for the regulation of mammalian cell cycle entry. Hypophosphorylated Rb is considered to be the active form and directs G1 arrest, while hyperphosphorylated Rb permits the transition from G1 to S phase for cell proliferation. Upon stimulation by various growth factors, Rb appears to be phosphorylated by a cascade of phosphorylation events mediated mainly by kinases associated with cyclins D and E. Here we report that in prototype small intestine crypt stem cells (RIEC-6), stimulation with either epidermal growth factor or fetal bovine serum results in an unexpected rapid and sustained Rb phosphorylation at sites Ser780, Ser795, and Thr821 which precedes cyclin D1 expression, cyclin D1/cdk4 complex formation, and cdk4 kinase activity. Rb phosphorylation at Ser780 and Ser795 is prevented by MEK, but not phosphatidylinositol 3-kinase, inhibitors. In vitro, Rb is directly phosphorylated by active ERK1/2 as shown by [gamma-32P]ATP labeling. The phosphorylation sites are further directed to Ser780 and Ser795 by kinase assays using recombined active ERK1/2 or immunoprecipitated phospho-ERK1/2 from mitogen stimulated cells. Pull-down assays revealed that Rb interacts with active ERK1/2 but not their inactive unphosphorylated forms. Upon EGF stimulation, phosphorylated ERK1/2 co-immunoprecipitates together with phosphorylated Rb. Collectively, these results demonstrate a novel rapid Rb phosphorylation at specific sites induced by mitogen stimulation in epithelial cells of the small intestine. These data specifically identify ERK1/2 as the kinase responsible for Rb phosphorylation targeted to sites Ser780 and Ser795. It appears that ERK1/2 could be an important link between a mitogenic signal directly to Rb, thereby providing a rapid response mechanism between mitogen stimulation and cell cycle machinery.  相似文献   

3.
We have previously shown that the mitogenic effect of endothelin-1 (ET-1) in primary astrocytes is dependent on activation of both extracellular signal-regulated kinase (ERK)- and cytoskeleton (CSK)-dependent pathways. In this study, we evaluated the contribution of each of these pathways to the expression and activation of proteins mediating cell cycle progression. Our results suggest that ET-1-induced expression of cyclins D1 and D3 is dependent on the ERK- and CSK-dependent pathways, respectively; moreover, a decrease in the levels of the cyclin-dependent kinase inhibitor (CKI) p27 was observed as a consequence of ERK activation. Expression of both cyclins D1 and D3 together with a decrease in the p27 levels are essential for retinoblastoma protein (pRB) phosphorylation and cyclin A expression. Furthermore, the molecular events responsible for cell-cell contact inhibition of astrocyte proliferation were found to be independent of the mitogenic pathways leading to D-type cyclin expression. Cell growth arrest in confluent astrocytes was found to be correlated with increased expression of CKI p21, resulting in inhibition of D-type cyclin-associated pRB phosphorylation and cyclin A expression. Taken together, these results indicate that cyclins D1 and D3, which constitute the key mediators of the proliferative response of primary astrocytes to ET-1, are regulated by distinct signaling pathways.  相似文献   

4.
Impairment of cell cycle control has serious effects on inflammation, tissue repair, and carcinogenesis. We report here the G1 cell cycle arrest by monochloramine (NH2Cl), a physiological oxidant derived from activated neutrophils, and its mechanism. When Jurkat cells were treated with NH2Cl (70 microM, 10 min) and incubated for 24 h, the S phase population decreased significantly with a slight increase in the hypodiploid cell population. The G0/ G1 phase and G2/M phase populations did not show marked changes. Three hours after NH2Cl treatment, the retinoblastoma protein (pRB) was dephosphorylated especially at Ser780 and Ser795, both of which are important phosphorylation sites for the G1 checkpoint function. The phosphorylation at Ser807/811 showed no apparent change. The expression of cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors showed no apparent change. Moreover, the kinase activity that phosphorylates pRB remained constant even after NH2Cl treatment. The protein phosphatase activity that dephosphorylates pRB showed a marginal increase. Notably, when the recombinant pRB was oxidized by NH2Cl in vitro, the oxidized pRB became difficult to be phosphorylated by kinases, especially at Ser780 and Ser795, but not at Ser807/811. Amino acid analysis of oxidized pRB showed methionine oxidation to methionine sulfoxide. The NH2Cl-treated Jurkat cell proteins also showed a decrease in methionine. These observations suggested that direct pRB oxidation was the major cause of NH2Cl-induced cell cycle arrest. In the presence of 2 mM NH4+, NaOCl (200 microM) or activated neutrophils also induced a G1 cell cycle arrest. As protein methionine oxidation has been reported in inflammation and aging, cell cycle modulation by pRB oxidation may occur in various pathological conditions.  相似文献   

5.
6.
Astrocytes play a well-established role in brain metabolism, being a key element in the capture of energetic compounds from the circulation and in their delivery to active neurons. Their metabolic status is affected in many pathological situations, such as gliomas, which are the most common brain tumors. This proliferative dysfunction is associated with changes in gap junctional communication, a property strongly developed in normal astrocytes studied both in vitro and in vivo. Here, we summarize and discuss the findings that have lead to the identification of a link between gap junctions, glucose uptake, and proliferation. Indeed, the inhibition of gap junctional communication is associated with an increase in glucose uptake due to a rapid change in the localization of both GLUT-1 and type I hexokinase. This effect persists due to the up-regulation of GLUT-1 and type I hexokinase and to the induction of GLUT-3 and type II hexokinase. In addition, cyclins D1 and D3 have been found to act as sensors of the inhibition of gap junctions and have been proposed to play the role of mediators in the mitogenic effect observed. Conversely, in C6 glioma cells, characterized by a low level of intercellular communication, an increase in gap junctional communication reduces glucose uptake by releasing type I and type II hexokinases from the mitochondria and decreases the exacerbated rate of proliferation due to the up-regulation of the Cdk inhibitors p21 and p27. Identification of the molecular actors involved in these pathways should allow the determination of potential therapeutic targets that could lead to the testing of alternative strategies to prevent, or at least slow down, the proliferation of glioma cells.  相似文献   

7.
8.
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.  相似文献   

9.
Cyclic AMP is a second messenger for various hormones that inhibits cell multiplication and DNA synthesis in cultured astrocytes. We examined the effects of increasing intracellular cyclic AMP on the catalytic (cdks) and regulatory (cyclins and ckis) components of cyclin-dependent protein kinases, which regulate progression of the cell cycle before completion of DNA synthesis, in primary cultured astrocytes and in an astrocytic cell line C.LT.T.1.1. The amount of cdk4 changed little during the cell cycle and was not affected by cyclic AMP. There was little cdk1 and cdk2 in quiescent cells, and their expression increased during the G1-S phases. Cyclic AMP strongly inhibited cdk1 and cdk2 expression. Transforming growth factor beta also inhibited cdk1 expression in primary astrocytes. Cyclic AMP did not affect the two ckis p27KIP1 and p21CIP1. There was little cyclin D1 in quiescent cells, but it increased during the G1 phase and was reduced by cyclic AMP. Cyclin E increased during the G1-S phases and was not affected by cyclic AMP in primary astrocytes. The amount of cyclin A was low in quiescent cells and increased during the G1-S phases. Expression of its mRNA and protein was inhibited by cyclic AMP. The protein kinase activities associated with complexes of cyclins and cdks were increased by growth factors and prevented by cyclic AMP. We conclude that cyclic AMP inhibits progression of the cell cycle in astrocytes at least by preventing the expression of the regulatory subunits, cyclins D1 and A, and catalytic subunits, cdk1 and cdk2, of cyclin-regulated protein kinases. Key Words: Cyclin-dependent protein kinases-Glial cells-Cyclic AMP.  相似文献   

10.
The retinoblastoma susceptibility gene (RB) product, the retinoblastoma protein (pRb), functions as a regulator of cell proliferation. Introduction of the RB gene into SAOS-2 osteosarcoma cells, which lack functional pRb, prevents cell cycle progression. Such growth-suppressive functions can be modulated by phosphorylation of pRb, which occurs via cell cycle-regulated kinases. We show that constitutively expressed cyclins A and E can overcome pRb-mediated suppression of proliferation. pRb becomes hyperphosphorylated in cells overexpressing these cyclins, and this phosphorylation is essential for cyclin A- and cyclin E-mediated rescue of pRb-blocked cells. This suggests that G1 and S phase cyclins can act as regulators of pRb function in the cell cycle by promoting pRb phosphorylation.  相似文献   

11.
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.  相似文献   

12.
The synthesis and CDK inhibitory properties of a series of indolo[6,7-a]pyrrolo[3,4-c]carbazoles is reported. In addition to their potent CDK activity, the compounds display antiproliferative activity against two human cancer cell lines. These inhibitors also effect strong G1 arrest in these cell lines and inhibit Rb phosphorylation at Ser780 consistent with inhibition of cyclin D1/CDK4.  相似文献   

13.
Differential phosphorylation of the retinoblastoma protein plays a pivotal role in cell cycle regulation. The retinoblastoma protein is specifically phosphorylated during the cell cycle by cyclin-dependent kinase complexes which intersect with many cellular signaling networks. Since the loss of the retinoblastoma signaling pathways occurs in a wide variety of human tumors, understanding the significance of site-specific phosphorylation can clarify the role of selected cyclin-dependent kinase complexes during cell cycle progression. Here we describe the phosphospecificity and cellular characterization of a panel of polyclonal antibodies that recognize unique phosphorylation sites within the retinoblastoma protein. These reagents were used to validate authentic cellular retinoblastoma phosphorylation sites at amino acids 780, 795, and 807/811 correlating with the G1-S transition.  相似文献   

14.
We have recently identified a novel candidate oncogene, MCT-1, in the HUT 78 T-cell line. When overexpressed in NIH3T3 fibroblasts, the MCT-1 gene shortens the G1 phase of the cell cycle and promotes anchorage-independent growth. Progression of cells through a late G1 phase restriction point is regulated by G1 cyclins whose phosphorylation of the retinoblastoma gene product facilitates entry into S phase. Deregulated expression of G1 cyclins and their cognate cdk partners is often found in human tumor cells. In order to address the potential relationship of MCT-1 to cell cycle regulatory molecules, we analyzed the ability of MCT-1 overexpression to modulate cdk4 and cdk6 kinase activity in NIH3T3 fibroblasts constitutively overexpressing MCT-1. We observed an increase in the kinase activity of both cdk4 and cdk6 in asynchronously growing transformed cells compared with the parent cells. This increased kinase activity was accompanied by an elevated level of cyclin D1 protein and increased G1 cyclin/cdk complex formation. We also observed a correlation between increased protein levels of MCT-1 with cyclin D1 expression in a panel of lymphoid cell lines derived from T-cell malignancies. These results demonstrate that constitutive expression of MCT-1 is associated with deregulation of protein kinase-mediated G1 phase checkpoints.  相似文献   

15.
To elucidate the regulator-versus-target relationship in the cyclin D1/cdk4/retinoblastoma protein (pRB) pathway, we examined fibroblasts from RB-1 gene-deficient and RB-1 wild-type littermate mouse embryos (ME) and in human tumor cell lines that differed in the status of the RB-1 gene. The RB+/+ and RB-/- ME fibroblasts expressed similar protein levels of D-type cyclins, cdk4, and cdk6, showed analogous spectra and abundance of cellular proteins complexed with cdk4 and/or cyclins D1 and D2, and exhibited comparable associated kinase activities. Of the two human cell lines established from the same sarcoma biopsy, the RB-positive SKUT1B cells contained cdk4 that was mainly associated with D-type cyclins, contrary to a predominant cdk4-p16INK4 complex in the RB-deficient SKUT1A cells. Antibody-mediated neutralization of cyclin D1 arrested the RB-positive ME and SKUT1B cells in G1, whereas this cyclin appeared dispensable in the RB-deficient ME and SKUT1A cells. Lack of requirement for cyclin D1 therefore correlated with absence of functional pRB, regardless of whether active cyclin D1/cdk4 holoenzyme was present in the cells under study. Consistent with a potential role of cyclin D/cdk4 in phosphorylation of pRB, monoclonal anti-cyclin D1 antibodies supporting the associated kinase activity failed to significantly affect proliferation of RB-positive cells, whereas the antibody DCS-6, unable to coprecipitate cdk4, efficiently inhibited G1 progression and prevented pRB phosphorylation in vivo. These data provide evidence for an upstream control function of cyclin D1/cdk4, and a downstream role for pRB, in the order of events regulating transition through late G1 phase of the mammalian cell division cycle.  相似文献   

16.
17.
The retinoblastoma protein (pRb) inhibits progression through the cell cycle. Although pRb is phosphorylated when G1 cyclin-dependent kinases (Cdks) are active, the mechanisms underlying pRb regulation are unknown. In vitro phosphorylation by cyclin D1/Cdk4 leads to inactivation of pRb in a microinjection-based in vivo cell cycle assay. In contrast, phosphorylation of pRb by Cdk2 or Cdk3 in complexes with A- or E-type cyclins is not sufficient to inactivate pRb function in this assay, despite extensive phosphorylation and conversion to a slowly migrating "hyperphosphorylated form." The differential effects of phosphorylation on pRb function coincide with modification of distinct sets of sites. Serine 795 is phosphorylated efficiently by Cdk4, even in the absence of an intact LXCXE motif in cyclin D, but not by Cdk2 or Cdk3. Mutation of serine 795 to alanine prevents pRb inactivation by Cdk4 phosphorylation in the microinjection assay. This study identifies a residue whose phosphorylation is critical for inactivation of pRb-mediated growth suppression, and it indicates that hyperphosphorylation and inactivation of pRb are not necessarily synonymous.  相似文献   

18.
Genomic changes disrupting the expression of cyclin D3 are associated with aberrant growth of several human B-lymphoid malignancies. We demonstrate that the human diffuse large B-cell lymphoma (DLBCL), OCI-LY18 (LY18) expresses cyclin D3 but not cyclins D1 and D2. RNA interference was used to deplete cyclin D3 from LY18 cells. Surprisingly, knockdown of cyclin D3 did not inhibit pRb phosphorylation on cdk4/6- and cdk2-specific residues or measurably affect viability and proliferation. These results suggest that cyclin D3 is dispensable in LY18 cell proliferation and survival. Similar results were obtained following depletion of cyclin E. By contrast, combined knockdown of cyclins D3 and E had substantial consequences leading to G1-phase arrest and inhibition of proliferation. Whereas cell cycle distribution was not affected following individual depletion of cdk4, cdk6, or cdk2, the combined knockdown of cdk4 and cdk6 led to accumulation of LY18 cells in G1-phase of the cell cycle and inhibition of proliferation. Likewise treatment of LY18 cells with 2-Bromo-12,13-dihydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-dione, a selective inhibitor of cdk4/6, led to inhibition of proliferation. Taken together, these results uncover a built-in redundancy with cyclins D3 and E for G1-S progression. Moreover these findings highlight the rationale for simultaneous disruption of cdk4/6 as a potential therapeutic cancer strategy.  相似文献   

19.
PRL modulates cell cycle regulators in mammary tumor epithelial cells.   总被引:6,自引:0,他引:6  
PRL is essential for normal lobulo-alveolar growth of the mammary gland and may contribute to mammary cancer development or progression. However, analysis of the mechanism of action of PRL in these processes is complicated by the production of PRL within mammary epithelia. To examine PRL actions in a mammary cell-specific context, we selected MCF-7 cells that lacked endogenous PRL synthesis, using PRL stimulation of interferon-gamma-activated sequence-related PRL response elements. Derived clones exhibited a greater proliferative response to PRL than control cells. To understand the mechanism, we examined, by Western analysis, levels of proteins essential for cell cycle progression as well as phosphorylation of retinoblastoma protein. The expression of cyclin D1, a critical regulator of the G1/S transition, was significantly increased by PRL and was associated with hyperphosphorylation of retinoblastoma protein at Ser(780). Cyclin B1 was also increased by PRL. In contrast, PRL decreased the Cip/Kip family inhibitor, p21, but not p16 or p27. These studies demonstrate that PRL can stimulate the cell cycle in mammary epithelia and identify specific targets in this process. This model system will enable further molecular dissection of the pathways involved in PRL-induced proliferation, increasing our understanding of this hormone and its interactions with other factors in normal and pathogenic processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号