首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced multifunctional protein particles encapsulated enzymes and antibodies were developed for enzymatic bioassays and immunoassays with colorimetric and fluorescent channels. A colorimetric channel based on color-substrate precipitation was assigned for enzymatic bioassays for the measurement of hydrogen peroxide with the lowest detectable concentration of 10 μM. A fluorescent channel based on fluorescent labeled antibodies was assigned for immunoassays for the measurement of mouse immunoglobulin G (M IgG) with the lowest detectable concentration of 1.25 μgL(-1). The protein microparticles were fabricated with a template-assisted self-assembly technique termed "Protein Activation Spontaneous Self-assemble" (PASS). The multifunctional protein particles prepared with the PASS method have the advantages of high loading of analytical biomolecules, integrated biological functions, porous structure, and more importantly, they are optically transparent and fluorescence inactive. These unique features make our protein particles a new generation of bead-based platforms to perform enzyme bioassays and immunoassays.  相似文献   

2.
The recent development of piezoelectric devices as biosensors is reviewed. Biological materials, like enzymes, lipids, antibodies and antigens, have been used as specific coatings and were utilized for the determination of different substrates. Methods of protein coating and several applications are reported including microgravimetric immunoassays, microbial assays, DNA hybridization, enzyme detections and gas phase biosensors. Although the piezoelectric immunochemical sensor is convenient to use and very promising, a thorough understanding of the different phenomena associated with crystals frequency measurement in biological reactions is still lacking and deserves further investigation.  相似文献   

3.
A functional fusion protein, which consists of an antibody and an enzyme that can be used in enzyme immunoassays, has been constructed. However, a quantitative comparison of the characteristics of fusion proteins and chemical conjugates of the parents, which are functionally produced in a uniform microbial system, has not been adequately achieved. In this study, a fusion protein between the ZZ protein and Escherichia coli alkaline phosphatase (AP) and the parental ZZ protein and AP for chemical conjugate was functionally produced in the same bacterial system. A detailed examination of the ZZ–AP fusion protein and the effect of the ZZ–AP chemical conjugate on IgG affinity and enzymatic activity were performed. Compared with the parents, the equilibrium dissociation constant of ZZ–AP conjugate decreased by 32 % and catalytic activity decreased by 24 %, whereas the ZZ–AP fusion retained full parental activities and exhibited an approximately tenfold higher sensitivity than that of ZZ–AP conjugate in enzyme-linked immunosorbent assay. Thus, ZZ–AP fusion is a promising immunoreagent for IgG detection and a potential biolinker between antibodies and reporter enzymes (i.e., IgG–ZZ–AP fusion complex) in immunoassays.  相似文献   

4.
Hepatic triglyceride lipase (H-TGL) was purified from human postheparin plasma. Specific monoclonal antibodies (MAbs) were produced that discriminate between active (native) and inactive (denatured) forms of the enzyme. Mice immunized with native H-TGL resulted in MAbs that recognized only the native protein. The antibodies did not react with H-TGL treated with 1% sodium dodecyl sulfate or heated at 60 degrees C. The loss of immunoreactivity with heating correlated directly with the loss of enzyme activity and there was a corresponding increase in immunoreactivity with the MAbs prepared against the denatured enzyme. Western blot analysis of postheparin plasma with the MAbs against denatured H-TGL gave a single protein band of 65 kD; preheparin plasma showed no detectable immunoreactivity with either MAb. These immunochemical studies suggest that there are no circulating active or inactive forms of H-TGL in man. Furthermore, the MAbs provide the necessary reagents for development of immunoassays for H-TGL.  相似文献   

5.
Protein microchips: use for immunoassay and enzymatic reactions   总被引:34,自引:0,他引:34  
Different proteins such as antibodies, antigens, and enzymes were immobilized within the 100 x 100 x 20-microm gel pads of protein microchips. A modified polyacrylamide gel has been developed to accommodate proteins of a size up to 400,000 daltons. Electrophoresis in the microchip reaction chamber speeded up antigen-antibody interactions within the gel. Protein microchips were used in immunoassays for detection of antigens or antibodies, as well as to carry out enzymatic reactions and to measure their kinetics in the absence or presence of an inhibitor. A protein microchip can be used several times in different immunoassays and enzymatic kinetic measurements.  相似文献   

6.
Dihydrofolate reductase (DHFR; EC 1.5.1.3) was purified to homogeneity from soybean seedlings by affinity chromatography on methotrexate-aminohexyl Sepharose, gel filtration on Ultrogel AcA-54, and Blue Sepharose chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme gave a single protein band corresponding to a molecular weight of 22,000. The enzyme is not a 140,000 Da heteropolymer as reported by others. Amino acid sequence-specific antibodies to intact human DHFR and also antibodies to CNBr-generated fragments of human DHFR bound to the plant enzyme on Western blots and cross-reacted significantly in immunoassays, indicating the presence of sequence homology between the two enzymes. The plant and human enzymes migrated similarly on nondenaturing polyacrylamide electrophoretic gels as monitored by activity staining with a tetrazolium dye. The specific activity of the plant enzyme was 15 units/mg protein, with a pH optimum of 7.4. Km values of the enzyme for dihydrofolate and NADPH were 17 and 30 microM, respectively. Unlike other eukaryotic enzymes, the plant enzyme showed no activation with organic mercurials and was inhibited by urea and KCl. The affinity of the enzyme for folate was relatively low (I50 = 130 microM) while methotrexate bound very tightly (KD less than 10(-10) M). Binding of pyrimethamine to the plant enzyme was weaker, while trimethoprim binding was stronger than to vertebrate DHFR. Trimetrexate, a very potent inhibitor of the human and bacterial enzymes showed weak binding to the plant enzyme. However, certain 2,4-diaminoquinazoline derivatives were very potent inhibitors of the plant DHFR. Thus, the plant DHFR, while showing similarity to the vertebrate and bacterial enzymes in terms of molecular weight and immunological cross-reactivity, can be distinguished from them by its kinetic properties and interaction with organic mercurials, urea, KCl and several antifolates.  相似文献   

7.
Molecular biology and application of plant peroxidase genes   总被引:9,自引:0,他引:9  
Peroxidases are a family of isozymes found in all plants; they are heme-containing monomeric glycoproteins that utilize either H(2)O(2) or O(2) to oxidize a wide variety of molecules. These important enzymes are used in enzyme immunoassays, diagnostic assays and industrial enzymatic reactions. Peroxidase genes and their promoters can be used for molecular breeding of useful plants. Transgenic techniques have also been used to investigate the physiological and molecular functions of peroxidase genes in plants. Here, we review transgenic studies of peroxidase genes, including the functional analyses of the enzymes and their promoters. Regarding application of peroxidase genes, it has been reported that overexpression of the tomato TPX2 gene or the sweet potato swpa1 gene conferred increased salt-tolerance or oxidative-stress tolerance, respectively. The growth stimulation effect in transgenic tobacco and hybrid aspen upon overexpression of horseradish peroxidase gene is also discussed.  相似文献   

8.
This review discusses the analytical applications of monoclonal antibodies specific for enzymes. One important, but not well-studied, application of these monoclonal antibodies is their use in immobilizing enzymes on solid supports. This method is based on binding the enzymes to an immobilized antibody through the antigen binding site of the antibody. Enzymes immobilized this way retain much of their activity. The utility of immobilized enzyme reactors prepared by immobilizing the enzymes through antibodies is demonstrated by using them in the determination of acetylcholine and choline in brain tissue extracts. Currently available methods for immobilizing antibodies and enzymes are reviewed. Other issues discussed in this review include the problems and advantages of immobilized enzyme reactors, especially when used in conjunction with HPLC. In addition, the applications of monoclonal antibodies for the detection and measurement of enzymes and their isoforms are summarized.  相似文献   

9.
Protein engineering allows the generation of hybrid polypeptides with functional domains from different origins and therefore exhibiting new biological properties. We have explored several permissive sites in Escherichia coli beta-galactosidase to generate functional hybrid enzymes displaying a mouse scFv antibody fragment. When this segment was placed at the amino-terminus of the enzyme, the whole fusion protein was stable, maintained its specific activity and interacted specifically with the target antigen, a main antigenic determinant of foot-and-mouth disease virus. In addition, the antigen-targeted enzyme was enzymatically active when bound to the antigen and therefore useful as a reagent in single-step immunoassays. These results prove the flexibility of E. coli beta-galactosidase as a carrier for large-sized functional domains with binding properties and prompt the further exploration of the biotechnological applicability of the scFv enzyme targeting principle for diagnosis or other biomedical applications involving antigen tagging.  相似文献   

10.
Mass spectrometry-based (MS) methods are effective tools for discovering protein biomarker candidates that can differentiate between physiological and pathophysiological states. Promising candidates are validated in studies comprising large patient cohorts. Here, targeted protein analytics are used to increase sample throughput. Methods involving antibodies, such as sandwich immunoassays or Western blots, are commonly applied at this stage. Highly-specific and sensitive mass spectrometry-based immunoassays that have been established in recent years offer a suitable alternative to sandwich immunoassays for quantifying proteins. Mass Spectrometric ImmunoAssays (MSIA) and Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA/iMALDI) are two prominent types of MS-based immunoassays in which the capture is done either at the protein or the peptide level. We present an overview of these emerging types of immunoassays and discuss their suitability for the discovery and validation of protein biomarkers. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

11.
Heterogeneous enzyme immunoassay.   总被引:5,自引:0,他引:5  
During the past 10 to 15 years immunoassays have gained acceptance as the methods of choice in the diagnosis of a number of disease states. At present the immunodiagnostic techniques employed range from radioimmunoassay for haptens through immunofluorescence for autoimmune diseases to complement fixation for viral infections. All of these assays have their own individual limitations such as: safety, short shelf life and sensitivity. The development of enzyme immunoassays, in particular enzyme linked immunosorbent assay (ELISA), has led to a substantial literature which offers the view that enzyme immunoassays provide a safe, sensitive and specific alternative to standard methods for the detection of antibodies or antigens. The application of heterogeneous enzyme linked immunosorbent assays for the quantitation of haptens, macromolecular antigens and antibodies is reviewed.  相似文献   

12.
The N-terminal fragment of pro B-type natriuretic peptide (NT-proBNP) and proBNP are used as gold standard clinical markers of myocardial dysfunction such as cardiac hypertrophy and left ventricle heart failure. The actual circulating molecular forms of these peptides have been the subject of intense investigation particularly since these analytes are measured in clinical assays. Conflicting data has been reported and no firm consensus on the exact nature of the molecular species exists. Because these clinical assays are immunoassay-based, specific epitopes are detected. It is conceivable then that certain epitopes may be masked and therefore unavailable for antibody binding, thus the importance of determining the nature of the circulating molecular forms of these analytes. This situation is an unavoidable Achilles’ heel of immunoassays in general.A recombinant O-linked glycosylated form of proBNP has been show to mimic some of the properties of extracted plasma from a heart failure patient. In particular the recombinant and native material co-migrated as diffuse Western-immunostained bands on SDS-PAGE and each band collapsed to an apparent homogeneous band following deglycosylation. Thus, glycosylated-proBNP may be one such circulating form. Here we provide extensive physiochemical characterization for this O-linked protein and compare these results to other described circulating species, non-glycosylated-proBNP and NT-proBNP. It will be shown that glycosylation has no influence on the secondary and quaternary structure of proBNP. In fact, at moderate concentration in benign physiological neutral pH buffer, all three likely circulating species are essentially devoid of major secondary structure, i.e., are intrinsically unstructured proteins (IUPs). Furthermore, all three proteins exist as monomers in solution. These results may have important implications in the design of NT-proBNP/BNP immunoassays.  相似文献   

13.
Protein engineering allows the generation of hybrid polypeptides with functional domains from different origins and therefore exhibiting new biological properties. We have explored several permissive sites in Escherichia coli β-galactosidase to generate functional hybrid enzymes displaying a mouse scFv antibody fragment. When this segment was placed at the amino-terminus of the enzyme, the whole fusion protein was stable, maintained its specific activity and interacted specifically with the target antigen, a main antigenic determinant of foot-and-mouth disease virus. In addition, the antigen-targeted enzyme was enzymatically active when bound to the antigen and therefore useful as a reagent in single-step immunoassays. These results prove the flexibility of E. coli β-galactosidase as a carrier for large-sized functional domains with binding properties and prompt the further exploration of the biotechnological applicability of the scFv enzyme targeting principle for diagnosis or other biomedical applications involving antigen tagging.  相似文献   

14.
We have investigated the complex formation between an immobilized monoclonal antibody and antigens that differ in size about 50-fold. As a model system, we used an iodinated progesterone derivative and a progesterone-horseradish peroxidase conjugate as tracer and a monoclonal antibody as binding protein. The antibody was immobilized by four different methods: physical adsorption, chemical binding, and binding via protein G in the absence or presence of a protective protein (gelatin). These investigations have shown that the performance of competitive immunoassays is determined by a combination of factors: (a) the relative size of the analyte and the tracer, (b) the antibody density on the solid matrix, (c) the method of immobilization of the antibody, and (d) the binding constants between antibody-analyte and antibody-tracer. All of these interactions have to be considered in designing an optimal immunoassay. The smaller antigen can form a 3- to 35-fold higher maximal complex density than the larger antigen. Dose-response curves are less affected by the size of the tracer than by the binding constant with the antibody. A large enzyme tracer with a relatively low binding constant can, therefore, provide a more sensitive assay. On the other hand, the increase in complex density achieved with a smaller tracer yields a higher signal that in turn can provide a better signal-to-noise ratio in highly sensitive competitive solid-phase immunoassays. We have suggested a model for antibody immobilization that accounts for the interdependence of tracer size, complex formation, and antibody density. The methods described can be used to design and optimize immunoassays of predefined performance characteristics. The results are particularly useful for converting radioimmunoassays to enzyme immunoassays.  相似文献   

15.
The rapid diagnosis of viral infections is an important tool in the management of patients with infectious diseases. Solid-phase enzyme immunoassays have proved to be useful tools for the direct detection of the antigens of some viruses directly in clinical specimens. Such assays have been particularly useful in the diagnosis of viral infections in the gastrointestinal and respiratory tracts. However, standard solid-phase enzyme immunoassays often do not display sufficient sensitivity for the diagnosis of all cases of viral infections. Techniques which might be utilized to increase the sensitivity of solid-phase immunoassays include the use of monoclonal antibodies to maximize the efficiency of the antigen-antibody interactions and the use of high-turnover enzymes to increase the amount of signal generated by the ensuing enzyme-substrate reactions. In addition, techniques making use of nucleic acid hybridization have a great deal of potential for the accurate detection of viral nucleic acids in human body fluids. The successful application of these techniques to the diagnosis of viral infections could lead to a marked improvement in the care of patients with suspected infectious diseases as well as to a decrease in the transmission of viral infections to high-risk individuals.  相似文献   

16.
Recent applications of affinity mass spectrometry into clinical laboratories brought a renewed interest in immunoaffinity mass spectrometry as a more specific affinity method capable of selectively targeting and studying protein biomarkers. In mass spectrometry-based immunoassays, proteins are affinity retrieved from biological samples via surface-immobilized antibodies, and are then detected via mass spectrometric analysis. The assays benefit from dual specificity, which is brought about by the affinity of the antibody and the protein mass readout. The mass spectrometry aspect of the assays enables single-step detection of protein isoforms and their individual quantification. This review offers a comprehensive review of mass spectrometry-based immunoassays, from historical perspectives in the development of the immunoaffinity mass spectrometry, to current applications of the assays in clinical and population proteomic endeavors. Described in more detail are two types of mass spectrometry-based immunoassays, one of which incorporates surface plasmon resonance detection for protein quantification. All mass spectrometry-based immunoassays offer high-throughput targeted protein investigation, with clear implications in clinical research, encompassing biomarker discovery and validation, and in diagnostic settings as the next-generation immunoassays.  相似文献   

17.
Regulation of enzyme activity in the cell: effect of enzyme concentration.   总被引:6,自引:0,他引:6  
J J Aragón  A Sols 《FASEB journal》1991,5(14):2945-2950
The rapid development in our understanding of the regulation of enzyme activity makes it a high priority to ascertain whether the behavior of purified enzymes reflects their functional characteristics in vivo. Enzyme concentration is usually the most significant difference between routine in vitro assays and in vivo conditions, as it is well known that many intracellular enzymes are present in vivo at much higher concentrations than used in vitro. Various procedures are suitable for kinetic analysis at physiological concentrations of enzyme. Those more frequently used have been cell permeabilization, the utilization of purified enzymes at concentrations close to the in vivo range, and the addition of polyethylene glycol to increase the local protein concentration. In this review we briefly summarize observations on enzymes reported to exhibit concentration-dependent activity. The effect of enzyme concentration has been most thoroughly investigated in the case of phosphofructokinase. These studies may provide insight into the regulation of this important enzyme in the cell. The implications of both homologous and heterologous protein-protein interactions for the effect of enzyme concentration and their roles in the control of enzyme activity in vivo are also discussed.  相似文献   

18.
A novel method using an HPAE-PAD system, which is routinely applied to detect carbohydrates at low levels (ng per sample injection), has been applied to the measurement of key sucrose metabolising enzyme activities in partially purified extracts of sugarcane tissues. Extraction and assay procedures tailored for the HPAE-PAD system enabled the accurate measurement of enzyme activities in more mature internodes than had previously been possible using enzyme coupled assay methodology. A major advantage of the HPAE-PAD method is the capability to monitor a broad range of sugars in each assay and provides an overarching perspective of the mix of competing enzymes that may be operating simultaneously in crude extracts. The technique has been successfully applied to measuring the activity of key sucrose metabolising enzymes in sugarcane stem tissue that is generally low in protein and high in endogenous sugars, primarily sucrose.  相似文献   

19.
Recent applications of affinity mass spectrometry into clinical laboratories brought a renewed interest in immunoaffinity mass spectrometry as a more specific affinity method capable of selectively targeting and studying protein biomarkers. In mass spectrometry-based immunoassays, proteins are affinity retrieved from biological samples via surface-immobilized antibodies, and are then detected via mass spectrometric analysis. The assays benefit from dual specificity, which is brought about by the affinity of the antibody and the protein mass readout. The mass spectrometry aspect of the assays enables single-step detection of protein isoforms and their individual quantification. This review offers a comprehensive review of mass spectrometry-based immunoassays, from historical perspectives in the development of the immunoaffinity mass spectrometry, to current applications of the assays in clinical and population proteomic endeavors. Described in more detail are two types of mass spectrometry-based immunoassays, one of which incorporates surface plasmon resonance detection for protein quantification. All mass spectrometry-based immunoassays offer high-throughput targeted protein investigation, with clear implications in clinical research, encompassing biomarker discovery and validation, and in diagnostic settings as the next-generation immunoassays.  相似文献   

20.
酶分子的生物学功能很大程度上是由其三维空间结构和所处溶剂环境共同决定的。因此,优化酶分子的结构性质以及探索其性质最优的溶剂环境是改善酶分子功能以及进行理性设计的一个可行途径。从实际应用的角度来看,分子设计方法可以为酶工程提供一种有效的解决方案。目前,酶分子设计有两个重要的研究方向,包括提高酶分子的催化活力和优化其稳定性。同时,对酶分子设计方法的研究也有助于对蛋白质生物学机理的探索。在近些年的学术界酶分子设计案例中,生物信息学方法得到广泛的应用。本文系统地总结基于生物信息学的酶分子设计方法的背景、策略和一些经典案例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号