首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Analogues of tri- and tetrapeptide substrates of carboxypeptidase A in which the scissile peptide linkage is replaced with a phosphonate moiety (-PO2--O-) were synthesized and evaluated as inhibitors of the enzyme. The inhibitors terminated with either L-lactate or L-phenyllactate [designated (O) Ala and (O) Phe, respectively] in the P1' position. Transition-state analogy was shown for a series of 14 tri- and tetrapeptide derivatives containing the structure RCO-AlaP-(O)Ala [RCO-AP(O)A, AP indicates the phosphonic acid analogue of alanine] by the correlation of the Ki values for the inhibitors and the Km/kcat values for the corresponding amide substrates. This correlation supports a transition state for the enzymatic reaction that resembles the tetrahedral intermediate formed upon addition of water to the scissile carbonyl group. The inhibitors containing (O) Phe at the P1' position proved to be the most potent reversible inhibitors of carboxypeptidase A reported to date: the dissociation constants of ZAFP(O)F, ZAAP(O)F, and ZFAP(O)F are 4, 3, and 1 pM, respectively. Because of the high affinity of these inhibitors, their dissociation constants could not be determined by steady-state methods. Instead, the course of the association and dissociation processes was monitored for each inhibitor as its equilibrium with the enzyme was established in both the forward and reverse directions. A phosphonamidate analogue, ZAAPF, in which the peptide linkage is replaced with a -PO2-NH- moiety, was prepared and shown to hydrolyze rapidly at neutral pH (t1/2 = 20 min at pH 7.5). This inhibitor is bound an order of magnitude less tightly than the corresponding phosphonate, ZAAP(O)F, a result that contrasts with the 840-fold higher affinity of phosphonamidates for thermolysin [Bartlett, P. A., & Marlowe, C. K. (1987) Science 235, 569-571], a zinc peptidase with a similar arrangement of active-site catalytic residues.  相似文献   

2.
3.
The structures of the transition states for a variety of enzyme-catalyzed ribosyl group transfer reactions, determined by computational evaluation of multiple tritium and heavy atom kinetic isotope effects on these enzymatic reactions, have been found to show a considerable variation in the extent of bond cleavage at the ribosyl anomeric carbon. The calculated transition-state structures have been used to guide the design of high-affinity transition-state analogue inhibitors for 5'-methylthioadenosine nucleosidases with potential as therapeutic agents.  相似文献   

4.
There is an urgent need for new drugs to treat leishmaniasis and Chagas disease. One important drug target in these organisms is sterol biosynthesis. In these organisms the main endogenous sterols are ergosta- and stigmata-like compounds in contrast to the situation in mammals, which have cholesterol as the sole sterol. In this paper we discuss the design, synthesis and evaluation of potential transition state analogues of the enzyme Delta24(25)-methyltransferase (24-SMT). This enzyme is essential for the biosynthesis of ergosterol, but not required for the biosynthesis of cholesterol. A series of compounds were successfully synthesised in which mimics of the S-adenosyl methionine co-factor were attached to the sterol nucleus. Compounds were evaluated against recombinant Leishmania major 24-SMT and the parasites L. donovani and Trypanosoma cruzi in vitro, causative organisms of leishmaniasis and Chagas disease, respectively. Some of the compounds showed inhibition of the recombinant Leishmania major 24-SMT and induced growth inhibition of the parasites. Some compounds also showed anti-parasitic activity against L. donovani and T. cruzi, but no inhibition of the enzyme. In addition, some of the compounds had anti-proliferative activity against the bloodstream forms of Trypanosoma brucei rhodesiense, which causes African trypanosomiasis.  相似文献   

5.
Lee JY  Duke RK  Tran VH  Hook JM  Duke CC 《Phytochemistry》2006,67(23):2550-2560
Literature indicates that herb-drug interaction of St. John's wort is largely due to increased metabolism of the co-administered drugs that are the substrates of cytochrome P450 (CYP) 3A4 enzyme, alteration of the activity and/or expression of the enzyme. The major St. John's wort constituents, acylphloroglucinols, were evaluated for their effects on CYP3A4 enzyme activity to investigate their roles in herb-drug interaction. Hyperforin and four oxidized analogues were isolated from the plant and fully characterized by mass spectral and NMR analysis. These acylphloroglucinols inhibited activity of CYP3A4 enzyme potently in the fluorometric assay using the recombinant enzyme. Furoadhyperforin (IC(50) 0.072 microM) was found to be the most potent inhibitor of CYP3A4 enzyme activity, followed by furohyperforin isomer 1 (IC(50) 0.079 microM), furohyperforin isomer 2 (IC(50) 0.23 microM), hyperforin (IC(50) 0.63 microM) and furohyperforin (IC(50) 1.3 microM). As the acylphloroglucinols are potent inhibitors of the CYP3A4 enzyme, their modulation of the enzyme activity is unlikely to be involved in increased drug metabolism by St. John's wort.  相似文献   

6.
The action of substrate analogs containing the tetrazolyl group instead of the C-terminal carboxy group on the peptidase activity of carboxypeptidase A is studied. The analogs compete with the substrate for the secondary binding site thus showing activation phenomena.  相似文献   

7.
In an effort to use a structure-based approach for the design of new herbicides, the crystal structures of complexes of tryptophan synthase with a series of phosphonate enzyme inhibitors were determined at 2.3 A or higher resolution. These inhibitors were designed to mimic the transition state formed during the alpha-reaction of the enzyme and, as expected, have affinities much greater than that of the natural substrate indole-3-glycerol phosphate or its nonhydrolyzable analogue indole propanol phosphate (IPP). These inhibitors are ortho-substituted arylthioalkylphosphonate derivatives that have an sp(3)-hybridized sulfur atom, designed to mimic the putative tetrahedral transition state at the C3 atom of the indole, and lack the C2 atom to allow for higher conformational flexibility. Overall, the inhibitors bind in a fashion similar to that of IPP. Glu-49 and Phe-212 are the two active site residues whose conformation changes upon inhibitor binding. A very short hydrogen bond between a phosphonate oxygen and the Ser-235 hydroxyl oxygen may be responsible for stabilization of the enzyme-inhibitor complexes. Implications for the mechanism of catalysis as well as directions for more potent inhibitors are discussed.  相似文献   

8.
M K Jain  W J Tao  J Rogers  C Arenson  H Eibl  B Z Yu 《Biochemistry》1991,30(42):10256-10268
More than 100 amphiphilic phosphoesters, possible tetrahedral transition-state analogues capable of coordinating to the calcium ion at the active site of phospholipase A2, were designed, synthesized, and tested as inhibitors for the hydrolysis of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol vesicles in the scooting mode. This assay system permits the study of structurally diverse inhibitors with phospholipase A2S from different sources, and it is not perturbed by factors that change the quality of the interface. As a prototype, 1-hexadecyl-3-trifluoroethylglycero-2-phosphomethanol (MJ33) was investigated in detail. Only the (S)-(+) analogue of MJ33 is inhibitory, and it is as effective as the sn-2 phosphonate or the sn-2 amide analogues of sn-3 phospholipids. The inhibitory potencies of the various phosphoesters depended strongly on the stereochemical and structural features, and the mole fractions of inhibitors required for 50% inhibition, X1(50), ranged from more than 1 to less than 0.001 mole fraction. The affinity of certain inhibitors for enzymes from different sources differed by more than 200-fold. The inhibitors protected the catalytic site residue His-48 from alkylation in the presence of calcium but not barium as expected if the formation of the EI complex is supported only by calcium. The equilibrium dissociation constant for the inhibitor bound to the enzyme at the interface was correlated with the XI(50) values, which were different if the inhibition was monitored in the pseudo-zero-order or the first-order region of the progress curve. These results show that the inhibitors described here interfered only with the catalytic turnover by phospholipase A2's bound to the interface, their binding to the enzyme occurred through calcium, and the inhibitors did not have any effect on the dissociation of the enzyme bound to the interface.  相似文献   

9.
The thermotropic behavior of mixtures of dipalmitoylphosphatidylcholine (DPPC) with natural glycosphingolipids (galactosylceramide, phrenosine, kerasine, glucosylceramide, lactosylceramide, asialo-GM1, sulfatide, GM3, GM1, GD1a, GT1b) in dilute aqueous dispersions were studied by high sensitivity differential scanning calorimetry over the entire composition range. The pretransition of DPPC is abolished and the cooperativity of the main transition decreases sharply at mole fractions of glycosphingolipids below 0.2. All systems exhibit non-ideal temperature-composition phase diagrams. The mono- and di-hexosylceramides are easily miscible with DPPC when the proportion of glycosphingolipids in the system is high. A limited quantity (1-6 molecules of DPPC per molecule of glycosphingolipid (GSL) can be incorporated into a homogeneously mixed lipid phase. Domains of DPPC, immiscible with the rest of a mixed GSL-DPPC phase that shows no cooperative phase transition, are established as DPPC exceeds a certain proportion in the system. One negative charge (sulfatide) or four neutral carbohydrate residues (asialo-GM1) in the oligosaccharide chain of the glycosphingolipids results in phase diagrams exhibiting coexistence of gel and liquid phases over a broad temperature-composition range. Systems containing gangliosides show complex phase diagrams, with more than one phase transition. However, no evidence for phase-separated domains of pure ganglioside species is found. The thermotropic behavior of systems containing DPPC and glycosphingolipids correlates well with their interactions in mixed monolayers at the air/water interface.  相似文献   

10.
The molecular structures of three phosphorus-based peptide inhibitors of aspartyl proteinases complexed with penicillopepsin [1, Iva-L-Val-L-Val-StaPOEt [Iva = isovaleryl, StaP = the phosphinic acid analogue of statine [(S)-4-amino-(S)-3-hydroxy-6-methylheptanoic acid] (IvaVVStaPOEt)]; 2, Iva-L-Val-L-Val-L-LeuP-(O)Phe-OMe [LeuP = the phosphinic acid analogue of L-leucine; (O)Phe = L-3-phenyllactic acid; OMe = methyl ester] [Iva VVLP(O)FOMe]; and 3, Cbz-L-Ala-L-Ala-L-LeuP-(O)-Phe-OMe (Cbz = benzyloxycarbonyl) [CbzAALP(O)FOMe]] have been determined by X-ray crystallography and refined to crystallographic agreement factors, R ( = sigma parallel to F0 magnitude of - Fc parallel to/sigma magnitude of F0), of 0.132, 0.131, and 0.134, respectively. These inhibitors were designed to be structural mimics of the tetrahederal transition-state intermediate encountered during aspartic proteinase catalysis. They are potent inhibitors of penicillopepsin with Ki values of 1, 22 nM; 2, 2.8 nM; and 3, 1600 nM, respectively [Bartlett, P. A., Hanson, J. E., & Giannousis, P. P. (1990) J. Org. Chem. 55, 6268-6274]. All three of these phosphorus-based inhibitors bind virtually identically in the active site of penicillopepsin in a manner that closely approximates that expected for the transition state [James, M. N. G., Sielecki, A.R., Hayakawa, K., & Gelb, M. H. (1992) Biochemistry 31, 3872-3886]. The pro-S oxygen atom of the two phosphonate inhibitors and of the phosphinate group of the StaP inhibitor make very short contact distances (approximately 2.4 A) to the carboxyl oxygen atom, O delta 1, of Asp33 on penicillopepsin. We have interpreted this distance and the stereochemical environment of the carboxyl and phosphonate groups in terms of a hydrogen bond that most probably has a symmetric single-well potential energy function. The pro-R oxygen atom is the recipient of a hydrogen bond from the carboxyl group of Asp213. Thus, we are able to assign a neutral status to Asp213 and a partially negatively charged status to Asp33 with reasonable confidence. Similar very short hydrogen bonds involving the active site glutamic acid residues of thermolysin and carboxypeptidase A and the pro-R oxygen of bound phosphonate inhibitors have been reported [Holden, H. M., Tronrud, D. E., Monzingo, A. F., Weaver, L. H., & Matthews, B. W. (1987) Biochemistry 26, 8542-8553; Kim, H., & Lipscomb, W. N. (1991) Biochemistry 30, 8171-8180].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The aldehyde (RS)-2-benzyl-4-oxobutanoic acid, which is 25% hydrated at pH 7.5, has recently been shown to be a strong reversible competitive inhibitor of carboxypeptidase A [Ki = 0.48 nM; Galardy, R. E., & Kortylewicz, Z. P. (1984) Biochemistry 23, 2083-2087]. The ketone analogue of this aldehyde (RS)-2-benzyl-4-oxopentanoic acid (IV) is not detectably hydrated under the same conditions and is 1500-fold less potent (Ki = 730 microM). The ketone homologue (RS)-2-benzyl-5-oxohexanoic acid (XIII) is also a weak inhibitor (Ki = 1.3 mM). The alpha-monobrominated derivatives of these two ketones are, however, strong competitive inhibitors with Ki's of 0.57 microM and 1.3 microM, respectively. Oximes derived from the aldehyde, the ketones IV and XIII, and a homologue of the aldehyde are weak inhibitors with Ki's ranging from 480 to 7900 microM. The inhibition of carboxypeptidase A by the alpha-monobrominated ketones is reversible and independent of the time (up to 6 h) of incubation of enzyme and inhibitor together. Bromoacetone at a concentration of 30 mM does not inhibit carboxypeptidase A. Incubation of an equimolar mixture of 2-benzyl-4-bromo-5-oxohexanoic acid (XV) and enzyme for 1 h led to the recovery of 82% of XV, demonstrating that it is the major species reversibly bound during assay of inhibition. Taken together, these results indicate that tight binding of carbonyl inhibitors to carboxypeptidase A requires specific binding of inhibitor functional groups such as benzyl and an electrophilic carbonyl carbon such as that of an alpha-bromo ketone or aliphatic aldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The amino acid sequence of bovine carboxypeptidase A. 3   总被引:3,自引:0,他引:3  
R A Bradshaw 《Biochemistry》1969,8(9):3871-3877
  相似文献   

14.
DSS as an activator of carboxypeptidase A   总被引:2,自引:0,他引:2  
  相似文献   

15.
2-Benzyl-3,4-iminobutanoic acid (3) was evaluated as a novel class of inhibitor for carboxypeptidase A (CPA). All four stereoisomers of 3 are found to have competitive inhibitory activity for CPA, although their inhibitory potencies differ widely with (2R,3R)-3 being most potent. The molecular modeling study for CPA(2R,3R)-3 complex suggested that the lone pair electrons on the nitrogen of the aziridine ring in the inhibitor forms a coordinative bond with the active site zinc ion and the proton on the nitrogen is engaged in hydrogen bonding with one of the carboxylate oxygens of Glu-270.  相似文献   

16.
17.
Transition states can be predicted from an enzyme's affinity to related transition-state analogues. 5'-Methylthioadenosine nucleosidases (MTANs) are involved in bacterial quorum sensing pathways and thus are targets for antibacterial drug design. The transition-state characteristics of six MTANs are compared by analyzing dissociation constants (K(d)) with a small array of representative transition-state analogues. These inhibitors mimic early or late dissociative transition states with K(d) values in the picomolar range. Our results indicate that the K(d) ratio for mimics of early and late transition states are useful in distinguishing between these states. By this criterion, the transition states of Neisseria meningitides and Helicobacter pylori MTANs are early dissociative, whereas Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae MTANs have late dissociative characters. This conclusion is confirmed independently by the characteristic [1'- (3)H] and [1'- (14)C] kinetic isotope effects (KIEs) of these enzymes. Large [1'- (3)H] and unity [1'- (14)C] KIEs are observed for late dissociative transition states, whereas early dissociative states showed close-to-unity [1'- (3)H] and significant [1'- (14)C] KIEs. K d values of various MTANs for individual transition-state analogues provide tentative information about transition-state structures due to varying catalytic efficiencies of enzymes. Comparing K d ratios for mimics of early and late transition states removes limitations inherent to the enzyme and provides a better predictive tool in discriminating between possible transition-state structures.  相似文献   

18.
2-Ethyl-2-methyl-3-mercaptopropanoic acid (6) and 2-benzyl-2-methyl-3-mercaptopropanoic acid (7) were synthesized and evaluated as inhibitors for carboxypeptidase A (CPA), a prototypical zinc protease with the expectation that the binding affinities of these inhibitors would be augmented over those of 2-ethyl-3-methylsuccinic acid (2) and 2-benzyl-3-methylsuccinic acid (3), respectively, in light of the fact that the sulfhydryl group is a better zinc coordinating moiety than the carboxylate group. Contrary to the expectation, however, the inhibitory potency of 6 was not improved and that of 7 was rather attenuated by the replacement. A probable explanation for the unexpected results is offered.  相似文献   

19.
Although amino-terminal transit peptides of chloroplastic precursor proteins are known to be necessary and sufficient for import into chloroplasts, the mechanism by which they mediate this process is not understood. Another important question is whether different precursors share a common transport apparatus. We used 20-residue synthetic peptides corresponding to regions of the transit peptide of the precursor to the small subunit of ribulose bisphosphate carboxylase (prSS) as competitive inhibitors for the binding and translocation of precursor proteins into chloroplasts. Synthetic peptides with sequences corresponding to either end of the transit peptide had little to no effect on binding of prSS to chloroplasts, but significantly inhibited its translocation. Synthetic peptides corresponding to the central region of the transit peptide inhibited binding of prSS to chloroplasts. Each of the peptides inhibited binding or translocation of precursors to light-harvesting chlorophyll a/b protein, ferredoxin, and plastocyanin in the same manner and to a similar extent as prSS transport was inhibited. The results presented in this paper suggest that the central regions of the transit peptide of prSS mediate binding to the chloroplastic surface, whereas the ends of this transit peptide are more important for translocation across the envelope. Furthermore, all of the precursors tested appear to share components in the transport apparatus even though they are sorted to different chloroplastic compartments.  相似文献   

20.
Activated derivatives of purine-containing deoxynucleoside- diphosphates spontaneously oligomerize to produce pyrophosphate- linked oligodeoxynucleotide analogues. These analogues are of potential interest as models of primitive, polynucleotide precursors. The efficiency of oligomerization (ImpdGpIm and ImpdApIm much greater than ImpdIpIm) appears to reflect a combination of stacking forces and the specific geometric orientations of the stacked units. Under favorable conditions, chain lengths greater than 20 have been obtained for oligomers containing pdGp in the absence of a template. In the presence of a complementary template, the activated derivatives of pdGp and pdAp oligomerize much more extensively. An acyclo-analogue of G has also been shown to undergo template-directed oligomerization on poly(C). These observations suggest the possibility that primitive information transfer might have evolved in much simpler systems and that this function was taken over by polynucleotides at a later stage in evolution. For the previous paper in this series see Schwartz and Orgel, 1985a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号