首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A 190 by insertion is associated with the white-eosin mutation in Drosophila melanogaster. This insertion is a member of a family of transposable elements, pogo elements, which is of the same class as the P and hobo elements of D. melanogaster. Strains typically have many copies of a 190 by element, 10–15 elements 1.1–1.5 kb in size and several copies of a 2.1 kb element. The smaller elements all appear to be derived from the largest by single internal deletions so that all elements share terminal sequences. They either always insert at the dinucleotide TA and have perfect 21 bp terminal inverse repeats, or have 22 by inverse repeats and produce no duplication upon insertion. Analysis by DNA blotting of their distribution and occupancy of insertion sites in different strains suggests that they may be less mobile than P or hobo. The DNA sequence of the largest element has two long open reading frames on one strand which are joined by splicing as indicated by cDNA analysis. RNAs of this strand are made, whose sizes are similar to the major size classes of elements. A protein predicted by the DNA sequence has significant homology with a human centrosomal-associated protein, CENP-B. Homologous sequences were not detected in other Drosophila species, suggesting that this transposable element family may be restricted to D. melanogaster.  相似文献   

2.
We estimated the number of copies for the long terminal repeat (LTR) retrotransposable element roo in a set of long-standing Drosophila melanogaster mutation-accumulation full-sib lines and in two large laboratory populations maintained with effective population size approximately 500, all of them derived from the same isogenic origin. Estimates were based on real-time quantitative PCR and in situ hybridization. Considering previous estimates of roo copy numbers obtained at earlier stages of the experiment, the results imply a strong acceleration of the insertion rate in the accumulation lines. The detected acceleration is consistent with a model where only one (maybe a few) of the approximately 70 roo copies in the ancestral isogenic genome was active and each active copy caused new insertions with a relatively high rate ( approximately 10(-2)), with new inserts being active copies themselves. In the two laboratory populations, however, a stabilized copy number or no accelerated insertion was found. Our estimate of the average deleterious viability effects per accumulated insert [E(s) < 0.003] is too small to account for the latter finding, and we discuss the mechanisms that could contain copy number.  相似文献   

3.
4.
Motivation: What forces maintain transposable elements (TEs)in genomes and populations is one of the main questions to understandthe dynamics of these elements, but the exact nature of theseforces is still a matter of speculation. To test theoreticalmodels of TE population dynamics, we need many data on the genomicdistributions of various elements. These data are now accumulatingfor the species Drosophila melanogaster, but they are scatteredin the literature. Results: The knowledge base DROSOPOSON thus brings together:(1) data available on Drosophila chromosomal localizations ofTE insertions and on features of the polytene chromosomes (DNAcontent, recombination rate, breakpoints, etc.); (2) statisticalmethods aimed at analysing the distribution of the TE insertionsalong the chromosomes. In this paper, we present the structureof the base, the data and the statistical methods. Theoreticalmodels of containment of TE copy number in Drosophila can thusbe tested. Availability: All the program sources, knowledge base schemesand data are available through anonymous ftp at biom3.univ-lyonl.fr(directory: pub/drosoposon). Contact: E-mail: hoogland{at}biomserv.univ-lyonl.fr  相似文献   

5.
The Drosophila melanogaster transposable element 412 is transiently unstable in Saccharomyces cerevisiae when present on a freely replicating plasmid. The 412 element undergoes recombination to form two circular molecules, a 412 deletion plasmid and, presumably, a 412 circle. The 412 deletion plasmid contains a single long terminal repeat which most likely is the result of homologous recombination within the long terminal repeats. This recombination occurs at or shortly after transformation and is independent of both the RAD52 gene product and the Flp gene of 2 micron DNA.  相似文献   

6.

Background

Mitochondrial DNA (mtDNA) deletions cause disease and accumulate during aging, yet our understanding of the molecular mechanisms underlying their formation remains rudimentary. Guanine-quadruplex (GQ) DNA structures are associated with nuclear DNA instability in cancer; recent evidence indicates they can also form in mitochondrial nucleic acids, suggesting that these non-B DNA structures could be associated with mtDNA deletions. Currently, the multiple types of GQ sequences and their association with human mtDNA stability are unknown.

Results

Here, we show an association between human mtDNA deletion breakpoint locations (sites where DNA ends rejoin after deletion of a section) and sequences with G-quadruplex forming potential (QFP), and establish the ability of selected sequences to form GQ in vitro. QFP contain four runs of either two or three consecutive guanines (2G and 3G, respectively), and we identified four types of QFP for subsequent analysis: intrastrand 2G, intrastrand 3G, duplex derived interstrand (ddi) 2G, and ddi 3G QFP sequences. We analyzed the position of each motif set relative to either 5'' or 3'' unique mtDNA deletion breakpoints, and found that intrastrand QFP sequences, but not ddi QFP sequences, showed significant association with mtDNA deletion breakpoint locations. Moreover, a large proportion of these QFP sequences occur at smaller distances to breakpoints relative to distribution-matched controls. The positive association of 2G QFP sequences persisted when breakpoints were divided into clinical subgroups. We tested in vitro GQ formation of representative mtDNA sequences containing these 2G QFP sequences and detected robust GQ structures by UV–VIS and CD spectroscopy. Notably, the most frequent deletion breakpoints, including those of the "common deletion", are bounded by 2G QFP sequence motifs.

Conclusions

The potential for GQ to influence mitochondrial genome stability supports a high-priority investigation of these structures and their regulation in normal and pathological mitochondrial biology. These findings emphasize the potential importance of helicases that subsequently resolve GQ to maintain the stability of the mitochondrial genome.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-677) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
Statistical properties of the amount of divergence of members of a transposable element family are studied. The analysis is based on the model proposed by Langley et al. [5], describing the evolution of a family of selectively neutral transposable elements in a finite haploid population of size 2N. By considering the time back to the most recent common ancestor of two copies, both the probability of identity and the moments of the number of sites that differ between two sampled copies are obtained. Our analytic results are consistent with the numerical results of Ohta [8] for a similar model. The effects of gene conversion are also examined. In agreement with Slatkin [9], we find that gene conversion has a minimal effect on the probability of identity providing that the rate of deletion is sufficiently large.  相似文献   

9.
10.
11.
The Penelope family of transposable elements (TEs) is broadly distributed in most species of the virilis species group of Drosophila. This element plays a pivotal role in hybrid dysgenesis in Drosophila virilis, in which at least four additional TE families are also activated. Here we present evidence that the Penelope family of elements has recently invaded D. virilis. This evidence includes: (1) a patchy geographical distribution, (2) genomic locations mainly restricted to euchromatic chromosome arms in various geographical strains, and (3) a high level of nucleotide similarity among members of the family. Two samples from a Tashkent (Middle Asia) population of D. virilis provide further support for the invasion hypothesis. The 1968 Tashkent strain is free of Penelope sequences, but all individuals collected from a 1997 population carry at least five Penelope copies. Furthermore, a second TE, Ulysses, has amplified and spread in this population. These results provide evidence for the Penelope invasion of a D. virilis natural population and the mobilization of unrelated resident transposons following the invasion.  相似文献   

12.
Analysis of P transposable element functions in Drosophila   总被引:147,自引:0,他引:147  
R E Karess  G M Rubin 《Cell》1984,38(1):135-146
  相似文献   

13.
The promoter region of the rice ubiquitin2 (rubq2) gene was found to be polymorphic between japonica (T309) and indica (IR24) lines as the result of a 270-bp deletion in T309. A TTATA footprint in the T309 rubq2 promoter suggested that an excision event had occurred, and inspection of the 270-bp region present in IR24 revealed that it had all the characteristics of a miniature inverted repeat transposable element (MITE). Database searches showed that this element is a member of a new MITE family, which we have named Kiddo. Thirty-five complete Kiddo sequences were identified in existing rice genomic sequence databases. They could be arranged into four groups, within-group sequence identity was over 90%, with 65-75% identity between groups. The high sequence similarity within a group indicates that some Kiddo members were recently mobile and may still be active. An additional 24 decayed Kiddo sequences were detected. Interestingly, approximately 80% of 18 Kiddo members from annotated accessions lie within 530 bp of a coding sequence. That approximately 40% of Kiddo members present in genic regions reside in introns suggests that Kiddo transposition entails the use of both DNA and RNA intermediates, and may provide some insight into the origins of individual groups. DNA blot analysis showed that Kiddo is a rice-specific element, although one sequence with limited (72%) similarity to Kiddo group A was detected as a wheat EST. Kiddo family members may represent new molecular and phylogenetic markers, as well as representing valuable materials for studying the molecular mechanisms of MITE transposition.  相似文献   

14.
Summary We report the presence of an extra chromosomal element in a family with Wilms' tumor (WT). This family has three children, two of whom were affected. One son, the proband, had bilateral and one daughter had unilateral WT. The first child, the father, and the mother did not have WT. The son with bilateral WT had a ring chromosome (R) both in the lymphocytes as well as in the kidney tissue. The size of the ring varied considerably from cell to cell. The daughter with unilateral WT had an abnormal clone containing a small chromosomal ring (r) in phytohemagglutinin (PHA)-stimulated and Epstein-Barr virus (EBV)-transformed lymphocytes. The mother had a karyotype similar to that of the daughter with WT. We hypothesize that the proband's ring chromosome could be the amplified form of the r inherited from the mother. Chromosome 11 was cytogenetically normal in all the cells examined of the affected children and the unaffected mother. In situ hybridization with a centromere-specific DNA cocktail indicated dispersed centromeric DNA both in r and R.  相似文献   

15.
A 320 nucleotide repeated DNA sequence within the copia coding element of Drosophila melanogaster has been identified and characterized. This sequence has been localized by DNA-DNA hybridization and electron microscopic analysis of heteroduplexes to the approximate middle of the 5 kb copia coding region. The primary sequence of this repeated DNA has been determined. The sequence is composed of three related subunits, 35-37 nucleotides in length (A, B and C). This 105 nucleotide higher order repeat has apparently been duplicated twice to yield a complex repeated sequence, ABCA'B'C'A"B"C", which exhibits divergence among the individual subunits. This sequence is AT rich, as are the direct terminal repeats which flank the copia coding region, but does not contain any apparent homology with the terminal repeats. This repeated sequence contains three presumptive polyadenylation signals and two 25 nucleotide, imperfectly matched, inverted repeat sequences adjacent to two of the polyadenylation sequences.  相似文献   

16.
Summary In order to characterize a previously described submicroscopic deletion encompassing (part of) the choroideremia (tapetochoroidal dystrophy: TCD) gene, we have cloned a 10.5-kb EcoRI fragment from the patient's DNA: this fragment carries the junction between both deletion endpoints (junction fragment). The distal portion of this fragment defines a new marker within, or just distal to the TCD gene. This marker has been employed to confirm the diagnosis in several affected family members, and to rule out carriership in a female at risk with conspicuous clinical signs.This work was presented in part at the 5th International Retinitis Pigmentosa Congress, Melbourne 1988  相似文献   

17.
I factors are LINE-like transposable elements in the genome of Drosophila melanogaster. They normally transpose infrequently but are activated in the germline of female progeny of crosses between males of a strain that contains complete elements, an I or inducer strain and females of a strain that does not, an R or reactive strain. This causes a phenomenon known as I-R hybrid dysgenesis. We have previously shown that the I factor promoter lies between nucleotides 1 and 30. Here we demonstrate that expression of this promoter is regulated by nucleotides 41-186 of the I factor. This sequence can act as an enhancer as it stimulates expression of the hsp7O promoter in ovaries in the absence of heat-shock. Within this region there is a site that is required for promoter activity and that is recognized by a sequence-specific binding protein. We propose that this protein contributes to the enhancer activity of nucleotides 41-186 and that reduced I factor expression in inducer strains is due to titration of this protein or others that interact with it.  相似文献   

18.
19.
P Dunsmuir  W J Brorein  M A Simon  G M Rubin 《Cell》1980,21(2):575-579
To examine the details of insertion for the D. malanogaster transposable element copia, we have isolated three independent pairs of genomic fragments which correspond to occupied and unoccupied target sites for insertion. Restriction endonuclease analysis suggests that sites with and without an element differ by a simple 5000 bp insertion. Direct DNA sequence analysis demonstrates that a 5 bp sequence, present once in the target DNA at the site of insertion, is found on both sides of the element after insertion. The 5 bp sequences which are duplicated are different in each case. Moreover, there does not appear to be any sequence homology among these three independent insertion sites  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号