首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The original article to which this Erratum was published in J. Cell. Physiol. 198:324–332, 2004 It has been recently established that low‐frequency electromagnetic field (EMFs) exposure induces biological changes and could be associated with increased incidence of cancer, while the issue remains unresolved as to whether high‐frequency EMFs can have hazardous effect on health. Epidemiological studies on association between childhood cancers, particularly leukemia and brain cancer, and exposure to low‐ and high‐frequency EMF suggested an etiological role of EMFs in inducing adverse health effects. To investigate whether exposure to high‐frequency EMFs could affect in vitro cell survival, we cultured acute T‐lymphoblastoid leukemia cells (CCRF‐CEM) in the presence of unmodulated 900 MHz EMF, generated by a transverse electromagnetic (TEM) cell, at various exposure times. We evaluated the effects of high‐frequency EMF on cell growth rate and apoptosis induction, by cell viability (MTT) test, FACS analysis and DNA ladder, and we investigated pro‐apoptotic and pro‐survival signaling pathways possibly involved as a function of exposure time by Western blot analysis. At short exposure times (2–12 h), unmodulated 900 MHz EMF induced DNA breaks and early activation of both p53‐dependent and ‐independent apoptotic pathways while longer continuous exposure (24–48 h) determined silencing of pro‐apoptotic signals and activation of genes involved in both intracellular (Bcl‐2) and extracellular (Ras and Akt1) pro‐survival signaling. Overall our results indicate that exposure to 900 MHz continuous wave, after inducing an early self‐defense response triggered by DNA damage, could confer to the survivor CCRF‐CEM cells a further advantage to survive and proliferate. J. Cell. Physiol. 198: 324–332, 2004. © 2003 Wiley‐Liss, Inc.  相似文献   

2.
Electric, magnetic, and electromagnetic fields are ubiquitous in our society, and concerns have been expressed regarding possible adverse effects of these exposures. Research on Extremely Low-Frequency (ELF) magnetic fields has been performed for more than two decades, and the methodology and quality of studies have improved over time. Studies have consistently shown increased risk for childhood leukemia associated with ELF magnetic fields. There are still inadequate data for other outcomes. More recently, focus has shifted toward Radio Frequencies (RF) exposures from mobile telephony. There are no persuasive data suggesting a health risk, but this research field is still immature with regard to the quantity and quality of available data. This technology is constantly changing and there is a need for continued research on this issue. To investigate whether exposure to high-frequency electromagnetic fields (EMF) could induce adverse health effects, we cultured acute T-lymphoblastoid leukemia cells (CCRF-CEM) in the presence of 900?MHz MW-EMF generated by a transverse electromagnetic (TEM) cell at short and long exposure times. We evaluated the effect of high-frequency EMF on gene expression and we identified functional pathways influenced by 900?MHz MW-EMF exposure.  相似文献   

3.
The correlation between shape and concentration of silver nanoparticles (AgNPs), their cytotoxicity and formation of reactive oxygen species (ROS) in the presence of electromagnetic fields (EMFs) has been investigated. In addition, the bio-effects caused by the combination of EMFs and graphene nanoparticles (GrNPs) have been also assessed. The AgNPs of three shapes (triangular, spherical and colloidal) and GrNPs were added in high concentrations to the culture of human fibroblasts and exposed to EMF of three different frequencies: 900, 2400 and 7500 MHz. The results demonstrated the dependence of the EMF-induced cytotoxicity on the shape and concentration of AgNPs. The maximal cell killing effect was observed at 900 MHz frequency for NPs of all shapes and concentrations. The highest temperature elevation was observed for GrNPs solution irradiated by EMF of 900 MHz frequency. The exposure to EMF led to significant increase of ROS formation in triangular and colloidal AgNPs solutions. However, no impact of EMF on ROS production was detected for spherical AgNPs. GrNPs demonstrated ROS-protective activity that was dependent on their concentration. Our findings indicate the feasibility to control cytotoxicity of AgNPs by means of EMFs. The effect EMF on the biological activity of AgNPs and GrNPs is reported here for the first time.  相似文献   

4.
5.
The effect of acute exposure to radio frequency electromagnetic fields (RF EMF) generated by mobile phones on an auditory threshold task was investigated. 168 participants performed the task while exposed to RF EMF in one testing session (either global system for mobile communication (GSM) or unmodulated signals) while in a separate session participants were exposed to sham signals. Lateralization effects were tested by exposing participants either on the left side or on the right side of the head. No significant effect of exposure to RF EMF was detected, suggesting that acute exposure to RF EMFs does not affect performance in the order threshold task.  相似文献   

6.
To investigate the influence of radiofrequency electromagnetic fields (EMFs) of cellular phone GSM signals on human sleep electroencephalographic (EEG) pattern, all-night polysomnographies of 24 healthy male subjects were recorded, both with and without exposure to a circular polarized EMF (900 MHz, pulsed with a frequency of 217 Hz, pulse width 577 μs, power flux density 0.2 W/m2. Suppression of rapid eye movement (REM) sleep as well as a sleep-inducing effect under field exposure did not reach statistical significance, so that previous results indicating alterations of these sleep parameters could not be replicated. Spectral power analysis also did not reveal any alterations of the EEG rhythms during EMF exposure. The failure to confirm our previous results might be due to dose-dependent effects of the EMF on the human sleep profile. Bioelectromagnetics 19:199–202, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The potential health risks of radiofrequency electromagnetic fields (EMFs) emitted by mobile phones are of considerable public interest. The present study investigated the hypothesis, based on the results of our previous study, that exposure to EMFs can increase sympathetic vasoconstrictor activity. Forty healthy young males and females underwent a single-blind, placebo-controlled protocol once on each of two different days. Each investigation included successive periods of placebo and EMF exposure, given in a randomized order. The exposure was implemented by a GSM-like signal (900 MHz, pulsed with 217 Hz, 2 W) using a mobile phone mounted on the right-hand side of the head in a typical telephoning position. Each period of placebo exposure and of EMF exposure consisted of 20 min of supine rest, 10 min of 70 degrees upright tilt on a tilt table, and another 20 min of supine rest. Blood pressure, heart rate and cutaneous capillary perfusion were measured continuously. In addition, serum levels of norepinephrine, epinephrine, cortisol and endothelin were analyzed in venous blood samples taken every 10 min. Similar to the previous study, systolic and diastolic blood pressure each showed slow, continuous, statistically significant increases of about 5 mmHg during the course of the protocol. All other parameters either decreased in parallel or remained constant. However, analysis of variance showed that the changes in blood pressure and in all other parameters were independent of the EMF exposure. These findings do not support the assumption of a nonthermal influence of EMFs emitted by mobile phones on the cardiovascular autonomic nervous system in healthy humans.  相似文献   

8.
Modern mobile phones emit electromagnetic fields (EMFs) ranging from 900 to 2000 MHz which are suggested to have an influence on well-being, attention and neurological parameters in mobile phone users. To date most studies have investigated Global System for Mobile Communications (GSM)-EMF and only very few studies were concerned with Universal Mobile Telecommunications System (UMTS)-EMF. Consequently, we tested the effects of both types of EMF, 1950 MHz UMTS (SAR 0.1 and 1 W/kg) and pulsed 900 MHz GSM (1 W/kg), on well-being and vigilance-controlled resting electroencephalogram (eyes closed) in 15 healthy, right-handed subjects. A double-blind, randomised, crossover application of the test procedure was used. Neither the UMTS- nor the GSM-EMF produced any significant changes in the measured parameters compared to sham exposure. The results do not give any evidence for a deleterious effect of the EMF on normal healthy mobile phone users.  相似文献   

9.
10.
The effects of exposure to radiofrequency electromagnetic fields (RF EMFs) on cell cycle progression of mouse fibroblasts C3H 10T(1/2) and human glioma U87MG cells were determined by the flow cytometric bromodeoxyuridine pulse-chase method. Cells were exposed to a frequency-modulated continuous wave at 835.62 MHz or a code division multiple access RF EMF centered on 847.74 MHz at an average specific absorption rate of 0.6 W/kg. Five cell cycle parameters, including the transit of cells through G(1), G(2) and S phase and the probability of cell division, were examined immediately after the cells were placed in the fields or after they had been kept in the fields for up to 100 h. The only significant change observed in the study was that associated with C3H 10T(1/2) cell cultures moving into plateau phase toward the later times in the long-exposure experiment. No changes in the cell cycle parameters were observed in cells exposed to either mode of RF EMFs when compared to sham-exposed cells in either of the cell lines studied during the entire experimental period. The results show that exposure to RF EMFs, at the frequencies and power tested, does not have any effect on cell progression in vitro.  相似文献   

11.
The pathological effects of exposure to an electromagnetic field (EMF) during childhood and adolescence may be greater than those from exposure during adulthood. We investigated possible pathological changes in the cerebellum of adolescent rats exposed to 900 MHz EMF daily for 25 days. We used three groups of six 21-day-old male rats as follows: unexposed control group (Non-EG), sham-exposed group (Sham-EG) and an EMF-exposed group (EMF-EG). EMF-EG rats were exposed to EMF in an EMF cage for 1 h daily from postnatal days 21 through 46. Sham-EG rats were placed in the EMF cage for 1 h daily, but were not subjected to EMF. No procedures were performed on the Non-EG rats. The cerebellums of all animals were removed on postnatal day 47, sectioned and stained with cresyl violet for histopathological and stereological analyses. We found significantly fewer Purkinje cells in the EMF-EG group than in the Non-EG and Sham-EG groups. Histopathological evaluation revealed alteration of normal Purkinje cell arrangement and pathological changes including intense staining of neuron cytoplasm in the EMF-EG group. We found that exposure to continuous 900 MHz EMF for 1 h/day during adolescence can disrupt cerebellar morphology and reduce the number of Purkinje cells in adolescent rats.  相似文献   

12.
In recent years, a number of in vitro studies have reported on the possible athermal effects of electromagnetic exposure on biological tissue. Typically, this kind of study is performed on monolayers of primary cells or cell lines. However, two‐dimensional cell layer systems lack physiological relevance since cells in vivo are organized in a three‐dimensional (3D) architecture. In monolayer studies, cell‐cell and cell‐ECM interactions obviously differ from live tissue and scale‐ups of experimental results to in vivo systems should be considered carefully. To overcome this problem, we used a scaffold‐free 3D cell culture system, suitable for the exploration of electrophysiological effects due to electromagnetic fields (EMF) at 900 MHz. Dissociated cardiac myocytes were reaggregated into cellular spheres by constant rotation, and non‐invasive extracellular recordings of these so‐called spheroids were performed with microelectrode arrays (MEA). In this study, 3D cell culture systems were exposed to pulsed EMFs in a stripline setup. We found that inhomogeneities in the EMF due to electrodes and conducting lines of the MEA chip had only a minor influence on the field distribution in the spheroid if the exposure parameters were chosen carefully. Bioelectromagnetics 32:351–359, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
The potential health risks of radiofrequency electromagnetic fields (RF EMFs) emitted by mobile phones are currently of considerable public interest. The present study investigated the effect of exposure to 900 MHz GSM radiofrequency radiation on steroid (cortisol and testosterone) and pituitary (thyroid-stimulating hormone, growth hormone, prolactin and adrenocorticotropin) hormone levels in 20 healthy male volunteers. Each subject was exposed to RF EMFs through the use of a cellular phone for 2 h/day, 5 days/ week, for 4 weeks. Blood samples were collected hourly during the night and every 3 h during the day. Four sampling sessions were performed at 15-day intervals: before the beginning of the exposure period, at the middle and the end of the exposure period, and 15 days later. Parameters evaluated included the maximum serum concentration, the time of this maximum, and the area under the curve for hormone circadian patterns. Each individual's pre-exposure hormone concentration was used as his control. All hormone concentrations remained within normal physiological ranges. The circadian profiles of prolactin, thyroid-stimulating hormone, adrenocorticotropin and testosterone were not disrupted by RF EMFs emitted by mobile phones. For growth hormone and cortisol, there were significant decreases of about 28% and 12%, respectively, in the maximum levels when comparing the 2-week (for growth hormone and cortisol) and 4-week (for growth hormone) exposure periods to the pre-exposure period, but no difference persisted in the postexposure period. Our data show that the 900 MHz EMF exposure, at least under our experimental conditions, does not appear to affect endocrine functions in men.  相似文献   

14.
Nowadays, due to the wide use of mobile phones, the possible biological effects of electromagnetic fields (EMF) become a public health general concern. Despite intensive research, there are no widely accepted theories about the interactions between EMFs and living cells, and the experimental data are often controversial. We examined the effects of mobile phones EMF (envelope frequency of 217 Hz, carrier frequency of 900 MHz and pulse duration of 580 micros) or its pure, low-frequency pulsed electric field component on fluid-phase endocytosis. In both cases, with exposures exceeding 10 min, an increase of the fluid-phase endocytosis rate was observed ( approximately 1.5-fold), on three different cell types. This increase is an all-or-nothing type of response that is occurring for threshold values comprised between 1.3 and 2.6 W/kg for the delivered EMF powers and between 1.1 and 1.5 V/cm for the electric fields intensities depending upon the cell type. The electric component of these EMFs is shown to be responsible for the observed increase. Variations of frequency or pulse duration of the electric pulses are shown to be without effect. Thus, EMF, via their electrical component, can perturb one of the most fundamental physiological functions of the cells-endocytosis.  相似文献   

15.
We investigated the effects of exposure in utero to a 900 megahertz (MHz) electromagnetic field (EMF) on 60-day-old rat testis and epididymis. Pregnant rats were divided into control (CG; no treatment) and EMF (EMFG) groups. The EMFG was exposed to 900 MHz EMF for 1 h each day during days 13 ? 21 of pregnancy. Newborn rats were either newborn CG (NCG) or newborn EMF groups (NEMFG). On postnatal day 60, a testis and epididymis were removed from each animal. Epididymal semen quality, and lipid and DNA oxidation levels, apoptotic index and histopathological damage to the testis were compared. We found a higher apoptotic index, greater DNA oxidation levels and lower sperm motility and vitality in the NEMFG compared to controls. Immature germ cells in the seminiferous tubule lumen, and altered seminiferous tubule epithelium and seminiferous tubule structure also were observed in hematoxylin and eosin stained sections of NEMFG testis. Nuclear changes that indicated apoptosis were identified in TUNEL stained sections and large numbers of apoptotic cells were observed in most of the seminiferous tubule epithelium in the NEMFG. Sixty-day-old rat testes exposed to 900 MHz EMF exhibited altered sperm quality and biochemical characteristics.  相似文献   

16.
The aim of this study was to investigate whether radiofrequency (RF) electromagnetic field (EMF) exposure affects cell death processes of yeast cells. Saccharomyces cerevisiae yeast cells of the strains KFy417 (wild-type) and KFy437 (cdc48-mutant) were exposed to 900 or 872 MHz RF fields, with or without exposure to ultraviolet (UV) radiation, and incubated simultaneously with elevated temperature (+37 degrees C) to induce apoptosis in the cdc48-mutated strain. The RF exposure was carried out in a special waveguide exposure chamber where the temperature of the cell cultures can be precisely controlled. Apoptosis was analyzed using the annexin V-FITC method utilizing flow cytometry. Amplitude modulated (217 pulses per second) RF exposure significantly enhanced UV induced apoptosis in cdc48-mutated cells, but no effect was observed in cells exposed to unmodulated fields at identical time-average specfic absorption rates (SAR, 0.4 or 3.0 W/kg). The findings suggest that amplitude modulated RF fields, together with known damaging agents, can affect the cell death process in mutated yeast cells. Bioelectromagnetics 25:127-133, 2004.  相似文献   

17.
We studied the effects of extremely low-frequency (50 Hz) electromagnetic fields (EMFs) on peripheral human blood lymphocytes and DBY747 Saccharomyces cerevisiae. Graded exposure to 50 Hz magnetic flux density was obtained with a Helmholtz coil system set at 1, 10 or 100 microT for 18 h. The effects of EMFs on DNA damage were studied with the single-cell gel electrophoresis assay (comet assay) in lymphocytes. Gene expression profiles of EMF-exposed human and yeast cells were evaluated with DNA microarrays containing 13,971 and 6,212 oligonucleotides, respectively. After exposure to the EMF, we did not observe an increase in the amount of strand breaks or oxidated DNA bases relative to controls or a variation in gene expression profiles. The results suggest that extremely low-frequency EMFs do not induce DNA damage or affect gene expression in these two different eukaryotic cell systems.  相似文献   

18.
Nowadays, due to the wide use of mobile phones, the possible biological effects of electromagnetic fields (EMF) become a public health general concern. Despite intensive research, there are no widely accepted theories about the interactions between EMFs and living cells, and the experimental data are often controversial. We examined the effects of mobile phones EMF (envelope frequency of 217 Hz, carrier frequency of 900 MHz and pulse duration of 580 μs) or its pure, low-frequency pulsed electric field component on fluid-phase endocytosis. In both cases, with exposures exceeding 10 min, an increase of the fluid-phase endocytosis rate was observed (≈1.5-fold), on three different cell types. This increase is an all-or-nothing type of response that is occurring for threshold values comprised between 1.3 and 2.6 W/kg for the delivered EMF powers and between 1.1 and 1.5 V/cm for the electric fields intensities depending upon the cell type. The electric component of these EMFs is shown to be responsible for the observed increase. Variations of frequency or pulse duration of the electric pulses are shown to be without effect. Thus, EMF, via their electrical component, can perturb one of the most fundamental physiological functions of the cells—endocytosis.  相似文献   

19.
Increased use of radio and microwave frequencies requires investigations of their effects on living organisms. Duckweed (Lemna minor L.) has been commonly used as a model plant for environmental monitoring. In the present study, duckweed growth and peroxidase activity was evaluated after exposure in a Gigahertz Transversal Electromagnetic (GTEM) cell to electric fields of frequencies 400, 900, and 1900 MHz. The growth of plants exposed for 2 h to the 23 V/m electric field of 900 MHz significantly decreased in comparison with the control, while an electric field of the same strength but at 400 MHz did not have such effect. A modulated field at 900 MHz strongly inhibited the growth, while at 400 MHz modulation did not influence the growth significantly. At both frequencies a longer exposure mostly decreased the growth and the highest electric field (390 V/m) strongly inhibited the growth. Exposure of plants to lower field strength (10 V/m) for 14 h caused significant decrease at 400 and 1900 MHz while 900 MHz did not influence the growth. Peroxidase activity in exposed plants varied, depending on the exposure characteristics. Observed changes were mostly small, except in plants exposed for 2 h to 41 V/m at 900 MHz where a significant increase (41%) was found. Our results suggest that investigated electromagnetic fields (EMFs) might influence plant growth and, to some extent, peroxidase activity. However, the effects of EMFs strongly depended on the characteristics of the field exposure.  相似文献   

20.
ABSTRACT

Despite their benefits, technological devices such as cell phones may also have deleterious effects on human health. Considerable debate continues concerning the effects of the electromagnetic field (EMF) emitted during cell phone use on human health. We investigated the effects of exposure to 900 megahertz (MHz) EMF during mid to late adolescence on the rat liver. Control (ContGr), sham (ShmGr) and EMF (EMFGr) groups of female rats were established. We exposed the EMFGr rats daily to 900 MHz EMF on postnatal days 35?59. ShmGr rats underwent sham procedures. No procedure was performed on ContGr rats. Rats were sacrificed on postnatal day 60 and the livers were extracted. One part of the liver was stained with Masson’s trichrome or hematoxylin and eosin. The remaining tissue was used to measure oxidative stress markers including malondialdehyde, glutathione, catalase, superoxide dismutase, 8-hydroxydeoxyguanosine (8-OHdG) and nitrotyrosine. Total antioxidant status and total oxidant status were used to calculate the oxidative stress index. We found normal hepatic morphology in the ContGr and ShmGr groups. The EMFGr group exhibited occasional irregularities in the radial arrangement of hepatocytes, cytoplasmic vacuolization, hemorrhage, sinusoid expansion, hepatocyte morphology and edema. Biochemical analysis revealed that 8-OHdG and SOD levels in EMFGr decreased significantly compared to the ContGr and ShmGr groups. Exposure to a continuous 900 MHz EMF for 1 h daily during mid to late adolescence may cause histopathological and biochemical alterations in hepatic tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号