首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The occurrence and distribution of supra-ependymal nerve terminals storing serotonin (5-HT) are described for the fourth ventricle of the rat brain. The nerve terminals were identified as monoaminergic 1) fluorescence-histochemically, by the presence of a varicose, formaldehyde-induced fluorescence (FIF) on the free surface of the ependyma, 2) electron microscopically, by the presence of electron dense (chromaffin) cores in small (50 nm) and large (100 nm) vesicles found within the varicose regions of supra-ependymal nerve fibres, and 3) by the absence of both the FIF and chromaffin dense cores after treatment with reserpine. Moreover, the serotonergic nature of these nerve fibres could be concluded from 1) the yellow colour of the FIF, 2) the increased FIF after treatment with nialamide or reserpine+nialamide, 3) the diminished FIF and absence of chromaffin dense cores after treatment with p-CPA, and finally 4) the persistence of the FIF and chromaffin dense cores after treatment with -MPT.A high density of 5-HT nerve terminals occurred throughout the floor of the fourth ventricle and on the floor and roof of the lateral recess. Few 5-HT nerve terminals occurred only on the roof of the fourth ventricle (velum medullare, lamina epithelialis of the tela chorioidea), and the surface of the choroid plexus epithelia was devoid of such nerves. Virtually all nerve terminals in the fourth ventricle appear to be serotonergic.Results presented in part at the Autumn Meeting of the British and Italian Pharmacological Societies, Bristol, 1974 (Lorez et al., 1974). The skilful assistance of Mr. R. Wybrecht, Mr. R. Reese and Mrs. M. Gschwind is gratefully acknowledged.  相似文献   

2.
A computational fluid dynamics (CFD) model of the cerebrospinal fluid system was constructed based on a simplified geometry of the brain ventricles and their connecting pathways. The flow is driven by a prescribed sinusoidal motion of the third ventricle lateral walls, with all other boundaries being rigid. The pressure propagation between the third and lateral ventricles was examined and compared to data obtained from a similar geometry with a stenosed aqueduct. It could be shown that the pressure amplitude in the lateral ventricles increases in the presence of aqueduct stenosis. No difference in phase shift between the motion of the third ventricle walls and the pressure in the lateral ventricles because of the aqueduct stenosis could be observed. It is deduced that CFD can be used to analyze the pressure propagation and its phase shift relative to the ventricle wall motion. It is further deduced that only models that take into account the coupling between ventricles, which feature a representation of the original geometry that is as accurate as possible and which represent the ventricle boundary motion realistically, should be used to make quantitative statements on flow and pressure in the ventricular space.  相似文献   

3.
Summary The scanning electron microscope was used to survey the brain ventricular system of the female armadillo (Dasypus novemcinctus) with emphasis on the third ventricle. The walls of the lateral ventricles, aqueduct, and fourth ventricle are covered by long cilia. In the lateral ventricle, the cilia are arranged in groups; but in the aqueduct and fourth ventricle, they are evenly placed over the cellular surfaces. The ependymal cells of the third ventricle are densely ciliated except for the organum vasculosum and infundibular recess. The non-ciliated luminal surface of these areas has a pebblestone appearance punctuated by numerous microvilli and two types of supraependymal cells.Supported by Edward G. Schlieder Foundation GrantThe authors would like to thank Jacqueline Skaggs for her secretarial assistance and Garbis Kerimian for his photographic work  相似文献   

4.
Summary Fluorescence histochemistry reveals that in the frog's taste organ a yellow fluorescence is regularly observed at the most basal region of the sensory epithelium. The fluorescence has a strong intensity, but it fades rapidly upon the UV-irradiation. The peak of the emission spectrum is at 520 m. Following reserpine treatment the yellow fluorescence is markedly reduced, but not depleted completely. From these characteristics the monoamine fluorescence is regarded as representing 5-HT (serotonin).The ultrastructural study on sensory epithelia shows that the terminal portions of gustatory cell processes are localized at the basal region. These portions are filled with dense cored vesicles (700–1000 Å in diameter) and frequently opposed with nerve fibers penetrating into the epithelium. The gustatory cell processes are also interposed between the terminal portions or nerve fibers. The cytoplasm of the gustatory cell process is characterized by many mitochondria, fine filaments and glycogen particles, but contains few cored vesicles. The distribution of terminal portions of gustatory cell processes seems to correspond fairly well to that of the monoamine fluorescence observed discontinuously along the basal lamina. Accordingly it is concluded that the fluorigenic monoamine is localized in the cored vesicles of the gustatory cell.These results were reported in a preliminary form to the October, 1974 meeting of the Japan Society of Histochemistry and Cytochemistry.The authors gratefully acknowledge the support and helpful advice of Prof. Dr. T. Kanaseki.  相似文献   

5.
Summary The foliate, vallate and fungiform papillae of the rabbit's tongue were studied fluorescence-histochemically under normal and experimental conditions. In normal animals a yellow fluorescence suggesting the presence of a serotonin-like monoamine was demonstrated only in taste bud cells of the foliate papilla, though its intensity was very weak. The fluorescence disappeared completely following reserpine treatment, while it was significantly enhanced by the treatment with nialamide. The fluorescence of taste bud cells could be clearly distinguished from that of catecholamines by the treatment with -MMT followed by nialamide. When 5-HTP, 5-HT and 5,6-DHT were administered separately, each of these drugs was selectively taken up in taste bud cells of the foliate and vallate papillae, but no fluorescent cells were observed in the fungiform papilla.From the present results, it seems reasonable to conclude that the fluorigenic amine of taste bud cells may be 5-HT (serotonin), or at least an indoleamine derivative. Also, it is suggested that the taste bud of the vallate papilla contains a cell type which can potentially synthesize a biogenic amine in situ, or is actually synthesizing it in a very small amount just like in the case of the taste bud of the foliate one.  相似文献   

6.
The H-Tx rat has fetal-onset hydrocephalus associated with closure of the cerebral aqueduct and a reduction in the secretory cells of the subcommissural organ (SCO), a circumventricular organ situated in the dorsal wall of the cerebral aqueduct. The objective of this study was to determine the role of the SCO in hydrocephalus pathogenesis. Serial brain sections through aqueduct regions containing the SCO from H-Tx rats, together with non-hydrocephalic Fischer F344 rats, were studied at E16, before hydrocephalus onset, at E17, the beginning of onset, and at P0 when the hydrocephalus was overt. Tissues were immunostained by AFRU, an antibody against the SCO glycoprotein, and for the intermediate filament nestin. The area of SCO cells with AFRU immunostaining and the severity of lateral ventricle dilatation were quantified by image analysis. At E16 all fetuses had distinct SCO ependymal cells, open aqueducts and normal lateral ventricles. The H-Tx fetuses fell into two groups with large areas and small areas of AFRU immunoreactivity, all with a full complement of SCO cells. By E17, fetuses with small areas of immunoreactivity had reduced numbers of tall SCO secretory cells, and most had aqueducts closed posteriorly and dilated ventricles. Three additional fetuses with small areas of immunoreactivity had narrow but patent aqueducts and normal ventricles, and another had an open aqueduct and dilated ventricles. At P0, pups previously identified as hydrocephalic had small areas of AFRU immunoreactivity, an aqueduct that was closed anteriorly but open posteriorly, ventricular dilatation, and an absence of SCO secretory cells. The aqueduct even when closed was lined by typical ependymal cells throughout. Decreased nestin immunostaining accompanied the SCO changes. It is concluded that reduced SCO glycoprotein immunoreactivity precedes both aqueduct closure and expansion of the lateral ventricles in the H-Tx rat.Funding was provided by the National Institutes of Health (NS40359). K.C.S. was supported by the University of Florida Scholars Program and Sigma Xi Grants-in-Aid  相似文献   

7.
Summary Apart from cholinergic nerve fibers, which make up the main part of efferent fibers to the avian adrenal gland (Unsicker, 1973b), adrenergic, purinergic and afferent nerve fibers occur. Adrenergic nerve fibers are much more rare than cholinergic fibers. With the Falck-Hillarp fluorescence method they can be demonstrated in the capsule of the gland, in the pericapsular tissue and near blood vessels. By their green fluorescent varicosities they may be distinguished characteristically from undulating yellow fluorescent ramifications of small nerve cells which are found in the ganglia of the adrenal gland and below the capsule. The varicosities of adrenergic axons exhibit small (450 to 700 Å in diameter) and large (900 to 1300 Å in diameter) granular vesicles with a dense core which is usually situated excentrically. After the application of 6-hydroxydopamine degenerative changes appear in the varicosities. Adrenergic axons are not confined to blood vessels but can be found as well in close proximity of chromaffin cells. Probably adrenergic fibers are the axons of large ganglion cells which are situated mainly within the ganglia of the adrenal gland and in the periphery of the organ and whose dendritic endings show small granular vesicles after treatment with 6-OHDA.A third type of nerve fiber is characterized by varicosities containing dense-cored vesicles with a thin light halo, the mean diameter (1250 Å) of which exceeds that of the morphologically similar granular vesicles in cholinergic synapses. Those fibers resemble neurosecretory and purinergic axons and are therefore called p-type fibers. They cannot be stained with chromalum-hematoxyline-phloxine. Axon dilations showing aggregates of mitochondria, myelin bodies and dense-cored vesicles of different shape and diameter are considered to be afferent nerve endings. Blood vessels in the capsule of the gland are innervated by both cholinergic and adrenergic fibers.Supported by a grant from the Deutsche Forschungsgemeinschaft (Un 34/1).  相似文献   

8.
Summary In the brain of the cockroach Periplaneta americana, the beta lobes of the corpora pedunculata respond with an intense positive reaction to a specific fluorescence histochemical method for catecholamines. The fluorescence reaction disappears completely after prolonged treatment of the cockroaches with reserpine. An ultrastructural examination of the beta lobes in formaldehyde-glutaraldehyde-osmium fixed preparations reveals the presence of two types of fibres: 1) Fibres and nerve endings containing small clear vesicles and sligthly larger vesicles with a semi-dense content. The appearance and size distribution of these vesicles ist not affected by treatment with reserpine. 2) Fibres containing larger and denser vesicles, but practically no clear vesicles. The size distribution of these dense vesicles is only slightly affected by treatment of the cockroaches with reserpine.If brain slices are incubated in a medium containing noradrenaline or -methyl-noradrenaline and fixed in permanganate, small vesicles with electron-dense central cores show up, similar to those which have been described in vertebrate adrenergic nerve fibres (small granular vesicles). They are confined to one of the two types of fibres (a and b) visible in these preparations, namely to type b, whose correspondence with type 2 fibres of formaldehyde-glutaraldehyde-osmium fixed preparations is discussed.The authors wish to thank Mr. E. Chessa and Mr. F. Piccirilli for technical assistance in photography.  相似文献   

9.
Summary A histochemical method for demonstrating amines by fluorescence showed that the pinealocytes of the ferret contained a high concentration of a yellow fluorophore (probably 5-HT). Numerous green-fluorescent (noradrenaline-containing) nerve fibres occurred around intrapineal blood vessels, between pinealocytes and in the N. conarii (which entered the gland caudally). A collection of neuron-like cells (the pineal ganglion) lay, surrounded by a meshwork of nerve fibres, in the posterior part of the pineal. Neither the cells nor the fibres of the pineal ganglion contained monoamines, but both showed the presence of acetyl-cholinesterase which otherwise was found in the pineal only in fibres which stretched from the ganglion towards the cranial pole of the gland. The medial habenular nucleus showed a remarkable perivascular green fluorescence not seen in the lateral habenular nucleus nor anywhere else in the adjacent diencephalon and brain stem. The cells and fibres of this nucleus also contained much acetyl-cholinesterase.Bilateral superior cervical ganglionectomy, or treating animals with reserpine, removed the green fluorescence from both pineal nerve fibres and the habenula. Ganglionectomy also resulted in a progressive alteration in the colour of the parenchymal fluorescence from yellow to green; the original yellow colour was restored by treating ganglionectomised animals with nialamide (a monoamine oxidase inhibitor). L-Dopa, 5-hydroxytryptophan or nialamide, alone or in combination, had no effect on the fluorescence of the nerve fibres or cells of the pineal, or on the habenula.These results are related to previous findings that pinealectomy or ganglionectomy prevents the acceleration by artificial light of oestrus in ferrets.  相似文献   

10.
Summary The ultrastructure of synapses between the cord giant fibres (lateral and medial) and the motor giant fibres in crayfish, Astacus pallipes, third abdominal ganglia have been examined. These electrotonic synapses are asymmetrical, they have synaptic vesicles only in the presynaptic fibre, and they have synaptic cleft widths normally of about 100 Å but narrowed to about 50 Å in restricted areas. Localized increases in density of the synaptic cleft and adjacent membranes also occur within a synapse, and synaptic vesicles are most tightly grouped at the membrane in such areas. Tight or gap junctions with 30 Å or narrower widths have not been found, but the junctions probably function in a similar way to gap junctions.Three small nerves are closely associated with the synapses between the giant fibres. One of these small nerves has round synaptic vesicles and is thought to be excitatory on morphological grounds; one has flattened vesicles and is thought to be inhibitory; and one is postsynaptic to the lateral giant and the two small presynaptic nerves. It is proposed that these small nerves modulate activity in the much larger giant fibre synapse.  相似文献   

11.
A J Dunn  R W Hurd 《Peptides》1986,7(4):651-657
Intracerebroventricular but not parenteral application of ACTH has been shown to elicit excessive grooming behavior in rats and mice. This behavior is elicited by administration of ACTH into the lateral, third, or fourth ventricles. Plugging of the cerebral aqueduct with cold cream fails to prevent grooming in response to lateral ventricle injection of ACTH. However, cold cream plugs in the third ventricle can prevent the subsequent induction of grooming behavior by lateral ventricle injection of ACTH, but only when the plugs are located in the anterior ventral third ventricle in the region of the organum vasculosum laminae terminalis (OVLT) and median eminence. These data suggest the anterior ventral third ventricle as the periventricular site of action of ACTH in eliciting excessive grooming, although it is possible that peptides taken up in this area are transported to other regions to elicit the behavioral response.  相似文献   

12.
This morphological study, based on serial sections and graphic reconstructions at 4-8 postovulatory weeks (stages 11-23), is believed to be the first account of the ventricular system in staged human embryos. Closure of the caudal neuropore at stage 12 heralds the onset of the ventricular system and separates the ependymal from the amniotic fluid. After the appearance of the optic ventricle at stage 11, the cavity of the telencephalon medium is discernible at stage 13. At stage 14 the future cerebral hemispheres and lateral ventricles begin, and the rhomboid fossa becomes apparent. The medial and lateral ventricular eminences cause indentations in the lateral ventricle by stage 15. The hypothalamic sulcus is evident at stage 16. At stages 17-18 the interventricular foramina are becoming relatively smaller, and cellular accumulations indicate the future choroid villi of the fourth and lateral ventricles. The areae membranaceae rostralis and caudalis are visible in the roof of the fourth ventricle at stage 18, and the paraphysis is appearing. At stage 19 choroid villi are seen in the fourth ventricle, and a mesencephalic evagination (Blindsack) is detectable. Choroid villi are noticeable in the lateral ventricle at stage 20. An olfactory ventricle is present by stage 21. At about stages 21-23 the lateral ventricle has become C-shaped, so that anterior and inferior horns are visible. Several recesses, e.g., the optic, infundibular, and pineal, develop in the third ventricle during the embryonic period. Features of the ventricular system that do not become apparent until the fetal period include the posterior horn of the lateral ventricle, choroid plexus of the third ventricle, suprapineal recess, interthalamic adhesion, aqueduct, and apertures in the roof of the fourth ventricle.  相似文献   

13.
O Nada  K Hirata 《Histochemistry》1976,50(2):111-117
The foliate, vallate and fungiform papillae of the rabbit's tongue were studied fluorescence-histochemically under normal and experimental conditions. In normal animals a yellow fluorescence suggesting the presence of a serotonin-like monoamine was demonstrated only in taste bud cells of the foliate papilla, though its intensity was very weak. The fluorescence disappeared completely following reserpine treatment, while it was significantly enhanced by the treatment with nialamide. The fluorescence of taste bud cells could be clearly distinguished from that of catecholamines by the treatment with alpha-MMT followed by nialamide. When 5-HTP, 5-HT and 5,6-DHT were administered separately, each of these drugs was selectively taken up in taste bud cells of the foliate and vallate papillae, but no fluorescent cells were observed in the fungiform papilla. From the present results, it seems reasonable to conclude that the fluorigenic amine of taste bud cells may be 5-HT (serotonin), or at least an indoleamine derivative. Also, it is suggested that the taste bud of the vallate papilla contains a cell type which can potentially synthesize a biogenic amine in situ, or is actually synthesizing it in a very small amount just like in the case of the taste bud of the foliate one.  相似文献   

14.
Summary Ganglia from Auerbach's plexus of the large intestine (caecum, appendix vermiformis, colon transversum and rectum) in man, rhesus monkey and guinea-pig are composed of nerve cells and their processes, typical Schwann cells and a vast neuropil. The neuropil consists of dendrites and axons of intrinsic nerve cell perikarya and axons of extrinsic neurons. Axonal profiles in large nerve fibre bundles are of uniform size and appearance, embedded in infoldings of Schwann cell cytoplasm and contain occasional large granular vesicles, mitochondria and neurotubules. Preterminal axons widen into vesicle filled varicosities, some of which establish synaptic contact with intrinsic nerve cell bodies.At least three different types of neuronal processes can be distinguished in the myenteric neuropil according to the size, appearance and commutual proportion of vesicles present in axonal varicosities, and their ability to accumulate exogenous 5- and 6-hydroxydopamine and 5-hydroxydopa: 1. Axonal enlargements containing a major population of small electron lucent synaptic vesicles (350–600 Å in diameter) together with a small number of membrane-bound, opaque granules (800–1,100 Å). These profiles have been identified as cholinergic axons. The boutons establish synaptic contacts with dendritic processes of intrinsic nerve cell bodies; membrane specializations are found at the preand postsynaptic sites. 2. Axonal beads of sometimes very large diameter, containing an approximately equal amount of large granular vesicles (850–1,600 Å) and small, electron lucent or faintly opaque vesicles (400–600 Å). The granular core of the large vesicles is of medium electron density and may either fill the entire vesicle or is separated from the limiting membrane by a more or less clear interspace. The fibres probably belong to intrinsic neurons, and because of the similarity of the large, membrane-bound vesicles with neurosecretory elementary granules, they have been designated p-type fibres (polypeptide fibres). The granular core of the vesicles in these fibres becomes more electron dense after treatment with 5-OH-dopa. The accumulation of an amine precursor analogue in combination with a possible storage of a polypeptide substance (or an ATP-like substance) resembles the situation in several diffusely distributed endocrine cell systems. 3. Varicosities of axons equipped with small (400–600 Å) empty or sometimes granular vesicles, medium sized (500–900 Å) vesicles with highly electron dense cores and occasional large (900–1,300 Å) granular vesicles. Pretreatment with 5-OH-dopamine increases the electron density in almost all medium-sized granular vesicles and some of the large granular vesicles; an osmiophilic core develops in some small vesicles. 6-hydroxydopamine results in degenerative changes in the varicosities of this type of neurons. Concomitantly, both catecholamine analogues markedly reduce neuronal noradrenaline in the large intestine, as demonstrated by fluorescence histochemistry and in fluorimetric determinations. The ultrastructural features of these varicosities and their reaction to 5- and 6-OH-dopamine indicate that they belong to adrenergic, sympathetic nerves. No membrane specializations could be detected at sites of close contact of the adrenergic boutons with dendrites and cell bodies of intrinsic nerve cells.Supported by grants from the Deutsche Forschungsgemeinschaft.Supported by a grant from Albert Pahlsson's Foundation, Sweden. The work was carried out within a research organization sponsored by the Swedish Medical Research Council (projects No. B70-14X-1007-05B, B70-14X-712-05, and B70-14X-56-06).  相似文献   

15.
Summary With the help of the highly specific and sensitive fluorescence method of Falck and Hillarp together with the histochemical and pharmacological criteria for the specificity of the fluorescence reaction convincing evidence has been obtained that the fine, varicose nerve fibres observed in a vast number of regions in the mammalian central nervous system (mouse, hamster, rat, guineapig, rabbit, cat), which exhibit a green or yellow fluorescence, contain primary catecholamines and 5-HT respectively. Strong support has been given for the view that CA fibres showing a rapid recovery after administration of -MMT contain DA, while those showing a slow recovery contain NA.There is little doubt that the monoamine-containing fibres in the brain represent the terminal ramifications of axons belonging to specific monoamine neurons and that they are true synaptic terminals. They seem to make their contacts via the varicosities which have extremely high concentrations of amines and in all probability represent the presynaptic structures, specialized for synthesis, storage and release of the amines. The central monoamine terminals thus have the same characteristic appearance as the adrenergic synaptic terminals in the peripheral nervous system.All the data strongly support the view that the specific central neurons giving rise to the terminals are monoaminergic, i.e. function by releasing their amines from the synaptic terminals. Consequently, DA, NA and 5-HT seem to be central neurotransmitters.Not only the median eminence but also the nuc. caudatus putamen, tuberculum olfactorium, nuc. accumbens and the small circumscribed areas medial to nuc. accumbens contain very fine (partly sublightmicroscopical) CA terminals. These areas react to treatment with reserpine, nialamide-dopa and -MMT in the same way and since the nuc. caudatus putamen and tuberculum olfactorium are known to have a high DA content it seems likely that abundant DA terminals are accumulated in these special areas.The Following Abbreviations are Used CA Catecholamine - DA Dopamine - dopa 3.4-Dihydroxy-phenylalanin - NA Noradrenaline - A Adrenaline - 5-HT 5-Hydroxytryptamine - -MMT -Methyl-meta-tyrosine - MAO Monoamine oxidase For generous supplies of drugs the author is indebted to the following companies: Swedish Ciba, Stockholm, Sweden (reserpine); Swedish Pfizer, Stockholm, Sweden (nialamide); Abbott Research Laboratories, Chicago, USA. (MO 911). This study has been supported by a Public Health Service Grant (NB 02854-04) from the National Institute of Neurological Diseases and Blindness and by grants from the Knut and Alice Wallenberg Foundation, and the Swedish Medical Research Council.  相似文献   

16.
Summary The ependymal cells bordering the median eminence to the third ventricle are characterised by many microvillus-like projections and bulbous cell processes of the luminal plasma membrane. The latter contain many vesicles 500–1,000 Å in diameter. Cilia with 9+2 fibrillar pattern are seen occasionally. Adhesive devices in the from of zonula adhaerens and zonula occludens are found in the apical part of the intercellular junction. Unmyelinated nerve fibres with a mean diameter of 1 and containing many electron dense granules of 830–1,330 Å are often seen between the ependymal cells.Two types of glial cells are found in the median eminence. One is characterised by a nucleus with dense blods of chromatin and dense cytoplasm, and it is associated chiefly with the nerve fibres in the region of the hypothalamo-hypophysial tract. The other type of glial cell is characterised by fine, uniformly distributed chromatin in the nucleus and a relatively pale cytoplasm and branched processes which terminate perivascularly in the base of the median eminence.Myelinated nerve fibres are seen only in the region of the hypothalamo-hypophysial tract. Only a part of them contain electron dense granules 1,330–2,330 Å in diameter.Three types of unmyelinated nerve fibres can be distinguished in the median eminence according to the size of the electron dense granules they contain: 1. Nerve fibres containing granules 1,330–2,330 Å in diameter. They are seen primarily in the hypothalamo-hypophysial tract, but also in the zona externa; 2. those containing granules with a mean diameter of 1,330 Å; and 3. those containing granules with a mean diameter of 1,000 Å. The last two types are both encountered in the hypothalamo-hypophysial tract, the zona externa and the perivascular region of the base of the median eminence. Under high magnification, the membrane of the granules show evidence of a trilaminar structure and the content of the granules with a low electron density appeares to consist of small microvesicles or globular components. Besides granules, these nerve fibres contain vesicles mostly 420 Å in diameter whose relative number increases towards the perivascular nerve endings. 53 per cent of the inclusions in the hypothalamo-hypophysial tract are granules and 47 per cent vesicles, while the corresponding percentages for the zona externa are 40 and 60 and for the perivascular nerve endings 20 and 80.The mean width of the pericapillary space is 1 , but it varies greatly. It containes many collagen fibrils and fibroblasts. The capillary endothelium is frequently fenestrated and contains many vesicles of various sizes.Two types of granules-containing cells are found in the pars tuberalis depending on the size of the electron dense granules: 1. cells containing granules with a mean diameter of 1,330 Å: and 2. cells containing granules with a mean diameter of 2,000 Å. In addition, there are occasional follicular cavities filled with amorphous material, microvilli and cilia of 9+2 fibrillar pattern.Aided by a grant from the Sigrid Jusélius Stifteise.  相似文献   

17.
Summary Pineal glands of normal adult mice, 7 to 42 days after bilateral superior cervical gangliectomy and 5 and 16 hours after one dose of reserpine (10 mg/kg) were studied under the electron microscope. The architecture of the gland is basically similar to that of other mammalian pineal glands previously studied. Mouse pinealocytes are polymorphic cells with perivascular and intercellular processes. Its most prominent feature is the presence of abundant granulated vesicles with a mean diameter of 1100 Å and a dense core of about 800 Å intermingled with clear vesicles of similar size distributed throughout the cytoplasm and more concentrated in perivascular and intercellular processes. These processes were seen in continuity with the perykaryon and remained after bilateral superior cervical gangliectomy. Processes containing the plurivesicular component of adrenergic nerves situated in perivascular and intercellular spaces disappeared after bilateral superior cervical gangliectomy. Reserpine depleted small granulated vesicles of nerves but the larger ones of perikaryon and polar processes remained almost unchanged.The histochemical technique of Wood was positive for catechol- and indolamines in the nerves. The reaction was negative in the perikaryon and polar processes.The significance of these findings is discussed.This work has been supported by grants of the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina and U.S. Air Force AF-AFOSR 67-0963 A.I am greatly indebted to Miss Haydee Agoff and Mr. Alberto Saenz for their skillful technical assistance.  相似文献   

18.
Summary The general structure, ultrastructure and innervation of the swimbladder of the smooth toadfish, Tetractenos glaber, were examined with light-microscopic, fluorescence-histochemical, and transmission electron-microscopic techniques. The structure of the swimbladder is similar to that of other euphysoclists. Fluorescence histochemistry showed adrenergic fibres in both the secretory and resorptive areas of the swimbladder. Transmission electron microscopy revealed two morphologically distinct axon profiles type-I profiles containing many small, flattened vesicles; type-II profiles containing both large, granular vesicles and rounded, small clear vesicles in varying proportions.The gas-gland cells and surrounding muscularis mucosae are innervated by both type-I and type-II fibres. Type-I fibres also innervate pre-rete arteries. The rete- and gas-gland capillaries do not appear to be innervated. Arteries running to the resorptive area are innervated by type-I fibres. Both type-I and type-II profiles make contact with the muscularis mucosae in the resorptive area. Only type-I fibres innervate the radial dilator muscle in the oval sphincter region, whereas only type II fibres innervate the circular muscle of the oval sphincter.Type-I fibres took up -methyl-noradrenaline, and could not be found after pre-treatment with 6-hydroxydopamine. They are, therefore, assumed to be adrenergic. Type-II fibres were tentatively identified, by exclusion, as cholinergic.  相似文献   

19.
Summary The innervation of the gut of the venerid bivalve mollusc, Chione stutchburyi, has been examined by fluorescence histochemistry, electron microscopy and autoradiography. Specific green and yellow varicose fluorescent fibres indicate the presence of dopaminergic and serotonergic axons, respectively. Three different types of axons can be distinguished by the morphological characteristics of their vesicles. Type I axons contain predominantly small granular vesicles (average diameter 65 nm), Type II axons possess large granular vesicles (average diameter 100 nm) and Type III axons contain large opaque vesicles (average diameter 150 nm). The granular vesicles in both Types I and II axons react positively to dichromate, and their granularity is reduced by reserpine indicating that they are monoaminergic. Only Type I axons accumulate tritiated dopamine and are selectively damaged by 6-hydroxydopamine. It is concluded that Type I axons are dopaminergic. Type II axons are serotonergic: they alone take up tritiated 5-hydroxytryptamine, and 5,7-dihydroxytryptamine selectively causes degenerative changes in these axons. Type III axons contain an unidentified neurotransmitter substance. The large opaque vesicles of these axons do not react to dichromate and are unaffected by reserpine, 6-hydroxydopamine or 5,7-dihydroxytryptamine.  相似文献   

20.
Summary The moderator band in the heart of the ox and goat contains bundles of Purkinje fibers and nerve fibers separated by connective tissue. The axons are mostly unmyelinated and embedded in the cytoplasm of Schwann cells.Small bundles of axons run close to the Purkinje fibers. The axons dilate into varicosities 0.5 to 1.6 in diameter (mean 0.95 ), containing three types of vesicles: 1) agranular vesicles with a diameter of 400–500 Å, 2) large dense-cored vesicles with a diameter of 800–1200 Å, 3) small dense-cored vesicles with a diameter of 500 Å. Most varicosities contain agranular vesicles together with a few large dense-cored vesicles.The gap between the varicosities and the nearest Purkinje fiber is unusually wide and normally varies between 0.3 and 0.8 . No intimate nerve-Purkinje fiber contacts, with a cleft of 200 Å, were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号