首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine whether immunization with purified outer membrane vesicles (OMV) from Treponema pallidum (T.p. ) could elicit Abs capable of killing this organism. It is well established that the immunization of rabbits or mice with killed T.p. or with recombinant T.p. Ags has failed to generate serum killing activity comparable with that of infection-derived immunity. Because of the small amount of T.p. OMV obtainable, a single mouse was immunized with purified OMV. The mouse anti-OMV serum and infection-derived immune rabbit serum (IRS) were compared by reactivities on two-dimensional T.p. immunoblots and by the T.p. immobilization test, a complement-dependent killing assay. Whereas IRS detected >40 Ags, the anti-OMV serum identified only 6 Ags corresponding to proteins identified previously in the outer membrane. T.p. immobilization testing showed that IRS had a 100% killing titer of 1:44 and a 50% killing titer of 1:662. By comparison, the mouse anti-OMV serum had a significantly greater 100% killing titer of 1:1,408 and a 50% killing titer of 1:16,896. Absorption of the anti-OMV serum to remove Ab against outer membrane-associated lipoproteins did not change the 100% killing titer. Freeze-fracture analysis of T.p. incubated in IRS or anti-OMV serum showed that T.p. rare membrane-spanning outer membrane proteins were aggregated. This is the first demonstration of high-titer killing Abs resulting from immunization with defined T.p. molecules; our study indicates that the targets for these Abs are T. p. rare outer membrane proteins.  相似文献   

2.
The surface of Treponema pallidum subsp. pallidum (T. pallidum), the etiologic agent of syphilis, appears antigenically inert and lacks detectable protein, as judged by immunocytochemical and biochemical techniques commonly used to identify the outer membrane (OM) constituents of gram-negative bacteria. We examined T. pallidum by freeze-fracture electron microscopy to visualize the architecture of its OM. Treponema phagedenis biotype Reiter (T. phagedenis Reiter), a nonpathogenic host-associated treponeme, and Spirochaeta aurantia, a free-living spirochete, were studied similarly. Few intramembranous particles interrupted the smooth convex and concave fracture faces of the OM of T. pallidum, demonstrating that the OM of this organism is an unusual, nearly naked lipid bilayer. In contrast, the concave fracture face of the OM of S. aurantia was densely covered with particles, indicating the presence of abundant integral membrane proteins, a feature shared by typical gram-negative organisms. The concentration of particles in the OM concave fracture face of T. phagedenis Reiter was intermediate between those of T. pallidum and S. aurantia. Similar to typical gram-negative bacteria, the OM convex fracture faces of the three spirochetes contained relatively few particles. The unique molecular architecture of the OM of T. pallidum can explain the puzzling in vitro properties of the surface of the organism and may reflect a specific adaptation by which treponemes evade the host immune response.  相似文献   

3.
We have recently reported the isolation and purification of the Treponema pallidum outer membrane and the identification of its rare protein constituents, including a 31-kDa protein markedly enriched in the outer membrane preparation (D.R. Blanco, K. Reimann, J. Skare, C.I. Champion, D. Foley, M. M. Exner, R. E. W. Hancock, J. N. Miller, and M. A. Lovett, J. Bacteriol. 176:6088-6099, 1994). In this study, we report the cloning, sequencing, and expression of the structural gene which encodes the 31-kDa outer membrane protein, designated Tromp1. The deduced amino acid sequence from the tromp1 gene sequence encodes a 318-amino-acid polypeptide with a putative 40-amino-acid signal peptide. Processing of Tromp1 results in a mature protein with a predicted molecular mass of 30,415 Da and a calculated pI of 6.6. Secondary-structure predictions identified repeated stretches of amphipathic beta-sheets typical of outer membrane protein membrane-spanning sequences. A topological model of Tromp1 containing 14 transmembrane segments is proposed. Specific antiserum against a recombinant Tromp1 fusion protein was generated and was used to identify native Tromp1 in cellular fractionation. Upon Triton X-114 extraction and phase separation of T. pallidum, the 31-kDa Tromp1 protein was detected in the detergent-phase fraction but not in the protoplasmic cylinder or aqueousphase fractions, consistent with a hydrophobic outer membrane protein. Anti-Tromp1 antiserum was also used to identify native Tromp1 purified from whole T. pallidum by Triton X-100 solubilization followed by nondenaturing isoelectric focusing. Reconstitution of purified Tromp1 into planar lipid bilayers showed porin activity based on the measured single channel conductanes of 0.15 and 0.7 nS in 1 M KCl. These findings demonstrate that Tromp1 is a transmembrane outer membrane porin protein of T. pallidum.  相似文献   

4.
Treponema pallidum and the quest for outer membrane proteins   总被引:5,自引:1,他引:5  
Treponema pallidum, the syphilis spirochaete, has a remarkable ability to evade the humoral and cellular responses it elicits in infected hosts. Although formerly attributed to the presence of an outer coat comprised of serum proteins and/or mucopolysaccharides, current evidence indicates that the immuno-evasiveness of this bacterium is largely the result of its unusual molecular architecture. Based upon a combination of molecular, biochemical, and ultrastructural data, it is now believed that the T. pallidum outer membrane (OM) contains a paucity of poorly immunogenic transmembrane proteins (‘rare outer membrane proteins’) and that its highly immunogentc proteins are lipoproteins anchored predominantly to the periplasmic leaflet of the cytoplasmic membrane. The presence in the T. pallidum OM of a limited number of transmembrane proteins has profound implications for understanding syphilis pathogenesis as well as treponemal physiology. Two major strategies for molecular characterization of rare outer membrane proteins have evolved. The first involves the identification of candidate OM proteins as fusions with Escherichia coli alkaline phosphatase. The second involves the characterization of candidate OM proteins identified in outer membranes isolated from virulent T. pallidum. Criteria to define candidate OM proteins and for definitive identification of rare OM proteins are proposed as a guide for future studies.  相似文献   

5.
In this study, we report the cloning, sequencing, and expression of the gene encoding a 28-kDa Treponema pallidum subsp. pallidum rare outer membrane protein (TROMP), designated Tromp2. The tromp2 gene encodes a precursor protein of 242 amino acids including a putative signal peptide of 24 amino acids ending in a type I signal peptidase cleavage site of Leu-Ala-Ala. The mature protein of 218 amino acids has a calculated molecular weight of 24,759 and a calculated pI of 7.3. The predicted secondary structure of Tromp2 shows nine transmembrane segments of amphipathic beta-sheets typical of outer membrane proteins. Recombinant Tromp2 (rTromp2) was expressed with its native signal peptide, using a tightly regulated T7 RNA polymerase expression vector. Under high-level expression conditions, rTromp2 fractionated exclusively with the Escherichia coli outer membrane. Antiserum raised against rTromp2 was generated and used to identify native Tromp2 in cellular fractionations. Following Triton X-114 extraction and phase separation of T. pallidum, the 28-kDa Tromp2 protein was detected prominently in the detergent phase. Alkali and high-salt treatment of purified outer membrane from T. pallidum, conditions which remove peripherally associated membrane proteins, demonstrated that Tromp2 is an integral membrane protein. Whole-mount immunoelectron microscopy of E. coli cells expressing rTromp2 showed specific surface antibody binding. These findings demonstrate that Tromp2 is a membrane-spanning outer membrane protein, the second such protein to be identified for T. pallidum.  相似文献   

6.
We have previously observed that while native Treponema pallidum rare outer membrane protein 1 (Tromp1) is hydrophobic and has porin activity, recombinant forms of Tromp1 do not possess these properties. In this study we show that these properties are determined by conformation and can be replicated by proper renaturation of recombinant Tromp1. Native Tromp1, but not the 47-kDa lipoprotein, extracted from whole organisms by using Triton X-114, was found to lose hydrophobicity after treatment in 8 M urea, indicating that Tromp1's hydrophobicity is conformation dependent. Native Tromp1 was purified from 0.1% Triton X-100 extracts of whole organisms by fast-performance liquid chromatography (FPLC) and shown to have porin activity in planar lipid bilayers. Cross-linking studies of purified native Tromp1 with an 11 A cross-linking agent showed oligomeric forms consistent with dimers and trimers. For renaturation studies of recombinant Tromp1 (rTromp1), a 31,109-Da signal-less construct was expressed in Escherichia coli and purified by FPLC. FPLC-purified rTromp1 was denatured in 8 M urea and then renatured in the presence of 0.5% Zwittergent 3,14 during dialysis to remove the urea. Renatured rTromp1 was passed through a Sephacryl S-300 gel exclusion column previously calibrated with known molecular weight standards. While all nonrenatured rTromp1 eluted from the column at approximately the position of the carbonic anhydrase protein standard (29 kDa), all renatured rTromp1 eluted at the position of the phosphorylase b protein standard (97 kDa), suggesting a trimeric conformation. Trimerization was confirmed by using an 11 A cross-linking agent which showed both dimers and trimers similar to that of native Tromp1. Triton X-114 phase separations showed that all of renatured rTromp1, but none of nonrenatured rTromp1, phase separated exclusively into the hydrophobic detergent phase, similar to native Tromp1. Circular dichroism of nonrenatured and renatured rTromp1 showed a marked loss in alpha-helical secondary structure of renatured rTromp1 compared to the nonrenatured form. Finally, renatured rTromp1, but not the nonrenatured form, showed porin activity in planar liquid bilayers. These results demonstrate that proper folding of rTromp1 results in a trimeric, hydrophobic, and porin-active conformation similar to that of the native protein.  相似文献   

7.
The outer membrane of Treponema pallidum, the non-cultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of gram-negative bacteria contain abundant immunogenic membrane-spanning beta-barrel proteins mainly involved in nutrient transport. The absence of orthologs of gram-negative porins and outer membrane nutrient-specific transporters in the T. pallidum genome predicts that nutrient transport across the outer membrane must differ fundamentally in T. pallidum and gram-negative bacteria. Here we describe a T. pallidum outer membrane protein (TP0453) that, in contrast to all integral outer membrane proteins of known structure, lacks extensive beta-sheet structure and does not traverse the outer membrane to become surface exposed. TP0453 is a lipoprotein with an amphiphilic polypeptide containing multiple membrane-inserting, amphipathic alpha-helices. Insertion of the recombinant, non-lipidated protein into artificial membranes results in bilayer destabilization and enhanced permeability. Our findings lead us to hypothesize that TP0453 is a novel type of bacterial outer membrane protein which may render the T. pallidum outer membrane permeable to nutrients while remaining inaccessible to antibody.  相似文献   

8.
Freeze-fracture and deep-etch electron microscopy were used to investigate the molecular architecture of the Treponema pallidum outer membrane (OM). Freeze-fracture electron microscopy of treponemes freshly harvested from rabbit testes revealed that the intramembranous particles (IMPs) in both the concave and convex OM leaflets were distributed into alternating areas of relatively high and low particle density; in many OM fractures, IMPs formed rows that ran either parallel to or obliquely across the fracture faces. Statistical analysis (runs test) confirmed that the IMPs were nonrandomly distributed in both OM leaflets. Examination of deep-etched specimens revealed that the particles observed in freeze-fractured OMs also were surface exposed. Combined analysis of deep-etched and cross-fractured treponemes revealed that the OM particles were located in regions of the OM away from the endoflagella and closely apposed to the cytoplasmic membrane-peptidoglycan complex. When treponemes were incubated for extended periods with heat-inactivated immune rabbit syphilitic serum, no alteration in the distribution of OM IMPs was detected. In further experiments, approximately 1:1 mixtures of T. pallidum and Escherichia coli or separate suspensions of the nonpathogenic Treponema phagedenis biotype Reiter were fixed at 34 degrees C or after cooling to 0 degree C (to induce lateral phase separations that would aggregate IMPs). Only particles in the T. pallidum OM failed to aggregate in cells fixed at the lower temperature. The combined data suggest that the mobility of T. pallidum rare OM proteins is limited, perhaps as a result of interactions between their periplasmic domains and components of the peptidoglycan-cytoplasmic membrane complex.  相似文献   

9.
We recently reported the cloning and sequencing of the gene encoding a 31-kDa Treponema pallidum subsp. pallidum rare outer membrane porin protein, designated Tromp1 (D. R. Blanco, C. I. Champion, M. M. Exner, H. Erdjument-Bromage, R. E. W. Hancock, P. Tempst, J. N. Miller, and M. A. Lovett, J. Bacteriol. 177:3556-3562, 1995). Here, we report the stable expression of recombinant Tromp1 (rTromp1) in Escherichia coli. rTromp1 expressed without its signal peptide and containing a 22-residue N-terminal fusion resulted in high-level accumulation of a nonexported soluble protein that was purified to homogeneity by fast protein liquid chromatography (FPLC). Specific antiserum generated to the FPLC-purified rTromp1 fusion identified on immunoblots of T. pallidum the native 31-kDa Tromp1 protein and two higher-molecular-mass oligomeric forms of Tromp1 at 55 and 80 kDa. rTromp1 was also expressed with its native signal peptide by using an inducible T7 promoter. Under these conditions, rTromp1 fractionated predominantly with the E. coli soluble and outer membrane fractions, but not with the inner membrane fraction. rTromp1 isolated from the E. coli outer membrane and reconstituted into planar lipid bilayers showed porin activity based on average single-channel conductances of 0.4 and 0.8 nS in 1 M KCl. Whole-mount immunoelectron microscopy using infection-derived immune serum against T. pallidum indicated that rTromp1 was surface exposed when expressed in E. coli. These findings demonstrate that rTromp1 can be targeted to the E. coli outer membrane, where it has both porin activity and surface antigenic exposure.  相似文献   

10.
梅毒是由梅毒螺旋体(Tp)引起的一种严重危害人类健康的慢性感染性疾病,由于Tp目前尚不能体外人工培养,从而限制了对Tp致病机制的深入研究。Tp对宿主靶细胞的早期黏附定植是其后续病程发展的关键,而最早与宿主细胞直接接触的Tp外膜及外膜蛋白就成了关注的焦点。随着Tp全基因组序列的解析和分子生物学技术的发展,Tp外膜蛋白的筛选、鉴定及功能研究取得了一定进展。Tp92是首个在感染了梅毒的兔调理素抗毒血清中通过差示免疫筛选方法筛选出来的Tp外膜蛋白,序列高度保守,具有较强的抗原性,与其他螺旋体属及许多革兰阴性菌的外膜蛋白均具有较高的同源性,其在Tp的致病过程及机体的免疫应答中可能发挥着重要作用。就目前Tp外膜蛋白Tp92及其同源蛋白的研究进展进行了综述。  相似文献   

11.
【目的】预测和鉴定梅毒螺旋体(Tp)Tp92蛋白的B细胞表位,为深入探讨这些表位在梅毒表位疫苗中的作用奠定基础。【方法】采用Mobyle、ABCpred和IEDB在线软件综合分析预测Tp92蛋白的B细胞表位,人工合成6条表位多肽,以梅毒患者/感染兔血清(同时设健康人/兔血清对照)为标本,用间接ELISA法鉴定预测Tp92蛋白B细胞表位的免疫反应性。【结果】软件预测显示,Tp92蛋白的P1(24-39AA)、P2(332-347AA)、P3(520-536AA)、P4(575-588AA)、P5(103-118AA)、P6(694-712AA)氨基酸序列可能为其B细胞表位。间接ELISA分析表明,预测的P1、P3、P5和P6均与梅毒患者/感染兔血清呈阳性反应,而与健康人/兔血清不反应。【结论】本研究初步得出以下结论:P1、P3、P5和P6均为Tp92蛋白潜在的特异性B细胞表位,尤其是P3和P6免疫反应性最强。  相似文献   

12.
13.
Rabbits infected intravenously with Treponema pallidum were not markedly febrile, and the pyrogenicity of treponeme preparations administered intravenously to rabbits was negligible. The antibiotic polymyxin B did not induce any ultrastructural changes on the treponemal surface and was not lethal (immobilizing) for T. pallidum, which was, however, highly susceptible to detergents such as SDS. Extraction of treponemes with Triton X-100 removed the outer membrane (despite the presence of Mg2+) as shown by electron microscopy, and solubilized a limited number of proteins detectable by SDS-PAGE, including a dominant antigen (47 kDal) demonstrated by immunoblotting. None of the proteins were heat-modifiable. Periodic acid-silver staining of polyacrylamide gels for carbohydrate together with protease K digestion did not demonstrate major carbohydrate components in whole treponemes, or in the Triton-soluble fraction. Surface iodination of intact treponemes revealed very little surface exposure of treponemal proteins, although a protein which co-migrated with host albumin was labelled and appeared to be associated with the treponemal surface. Many treponemal proteins were, however, labelled when iodination was done in the presence of Triton. These observations, indicate that the outer membrane of T. pallidum differs significantly from those of many Gram-negative pathogens.  相似文献   

14.
The effects of the nonionic detergent Triton X-114 on the ultrastructure of Treponema pallidum subsp. pallidum are presented in this study. Treatment of Percoll-purified motile T. pallidum with a 1% concentration of Triton X-114 resulted in cell surface blebbing followed by lysis of blebs and a decrease in diameter from 0.25-0.35 micron to 0.1-0.15 micron. Examination of thin sections of untreated Percoll-purified T. pallidum showed integrity of outer and cytoplasmic membranes. In contrast, thin sections of Triton X-114-treated treponemes showed integrity of the cytoplasmic membrane but loss of the outer membrane. The cytoplasmic cylinders generated by detergent treatment retained their periplasmic flagella, as judged by electron microscopy and immunoblotting. Recently identified T. pallidum penicillin-binding proteins also remained associated with the cytoplasmic cylinders. Proteins released by Triton X-114 at 4 degrees C were divided into aqueous and hydrophobic phases after incubation at 37 degrees C. The hydrophobic phase had major polypeptide constituents of 57, 47, 38, 33-35, 23, 16, and 14 kilodaltons (kDa) which were reactive with syphilitic serum. The 47-kDa polypeptide was reactive with a monoclonal antibody which has been previously shown to identify a surface-associated T. pallidum antigen. The aqueous phase contained the 190-kDa ordered ring molecule, 4D, which has been associated with the surface of the organisms. Full release of the 47- and 190-kDa molecules was dependent on the presence of a reducing agent. These results indicate that 1% Triton X-114 selectively solubilizes the T. pallidum outer membrane and associated proteins of likely outer membrane location.  相似文献   

15.
The outer membranes from Treponema pallidum subsp. pallidum and Treponema vincentii were isolated by a novel method. Purified outer membranes from T. pallidum and T. vincentii following sucrose gradient centrifugation banded at 7 and 31% (wt/wt) sucrose, respectively. Freeze fracture electron microscopy of purified membrane vesicles from T. pallidum and T. vincentii revealed an extremely low density of protein particles; the particle density of T. pallidum was approximately six times less than that of T. vincentii. The great majority of T. vincentii lipopolysaccharide was found in the outer membrane preparation. The T. vincentii outer membrane also contained proteins of 55 and 65 kDa. 125I-penicillin V labeling demonstrated that t. pallidum penicillin-binding proteins were found exclusively with the protoplasmic cylinders and were not detectable with purified outer membrane material, indicating the absence of inner membrane contamination. Isolated T. pallidum outer membrane was devoid of the 19-kDa 4D protein and the normally abundant 47-kDa lipoprotein known to be associated with the cytoplasmic membrane; only trace amounts of the periplasmic endoflagella were detected. Proteins associated with the T. pallidum outer membrane were identified by one- and two-dimensional electrophoretic analysis using gold staining and immunoblotting. Small amounts of strongly antigenic 17- and 45-kDa proteins were detected and shown to correspond to previously identified lipoproteins which are found principally with the cytoplasmic membrane. Less antigenic proteins of 65, 31 (acidic pI), 31 (basic pI), and 28 kDa were identified. Compared with whole-organism preparations, the 65- and the more basic 31-kDa proteins were found to be highly enriched in the outer membrane preparation, indicating that they may represent the T. pallidum rare outer membrane proteins. Reconstitution of solubilized T. pallidum outer membrane into lipid bilayer membranes revealed porin activity with two estimated channel diameters of 0.35 and 0.68 nm based on the measured single-channel conductances in 1 M KCl of 0.40 and 0.76 nS, respectively.  相似文献   

16.
Normal human serum (NHS) was shown to have complement-dependent treponemicidal activity against both Treponema pallidum and Treponema phagedenis biotype Reiter (TPR) by employing in vitro-in vivo neutralization and TPR plaque assays, respectively. The molecular basis of NHS treponemicidal activity was studied by immunoblot analysis in conjunction with treponemicidal assays. Five major T. pallidum polypeptide bands (47kDa, 35kDa, 33kDa doublet, and 30 kDa) and three major TPR polypeptide bands (47kDa and 33kDa doublet) bound IgG present in NHS. Absorption of NHS with TPR completely removed both TPR and T. pallidum treponemicidal activity; corresponding immunoblots demonstrated a significant removal of IgG antibody against all three TPR polypeptide bands as well as four T. pallidum polypeptide bands (30kDa, 33kDa doublet, and 35kDa). In contrast, T. pallidum absorption of NHS was found to remove treponemicidal activity against T. pallidum but not TPR; corresponding Western blots showed the complete removal of IgG antibody against all but one T. pallidum polypeptide band (47kDa) but no detectable loss in IgG antibody against the TPR polypeptides. These results suggest that antibody in NHS generated against nonpathogenic, indigenous treponemes is responsible for the T. pallidum treponemicidal activity. Furthermore, the treponemicidal activity against T. pallidum correlated with the presence of IgG antibody against T. pallidum polypeptides of 30kDa, 35kDa, and a 33kDa doublet.  相似文献   

17.
Syphilis, a sexually transmitted infection caused by the spirochetal bacterium Treponema pallidum, remains a global public health problem. T. pallidum is believed to be an extracellular pathogen and, as such, the identification of T. pallidum outer membrane proteins that could serve as targets for opsonic or bactericidal antibodies has remained a high research priority for vaccine development. However, the identification of T. pallidum outer membrane proteins has remained highly elusive. Recent studies and bioinformatics have implicated four treponemal proteins as potential outer membrane proteins (TP0155, TP0326, TP0483 and TP0956). Indirect immunofluorescence assays performed on treponemes encapsulated within agarose gel microdroplets failed to provide evidence that any of these four molecules were surface-exposed in T. pallidum. Second, recombinant fusion proteins corresponding to all four candidate outer membrane proteins were used separately, or in combination, to vaccinate New Zealand White rabbits. Despite achieving high titers (>1:50,000) of serum antibodies, none of the rabbits displayed chancre immunity after intradermal challenge with viable T. pallidum.  相似文献   

18.
利用PCR技术从Tp Nichols株基因组模板中扩增梅毒螺旋体(Treponema pallidum,Tp)外膜蛋白Gpd基因,定向克隆构建真核表达重组体pcDNA3.1( )-Gpd,免疫印迹和免疫组化技术检测pcDNA3.1( )-Gpd在HeLa细胞中的表达;同时将真核表达重组体pcDNA3.1( )-Gpd免疫新西兰兔,检测其在兔体内的免疫应答效果。免疫印迹和免疫组化鉴定均显示重组体在HeLa细胞中能有效表达一个41kD的Gpd融合蛋白。新西兰兔接种核酸疫苗后,能产生特异性抗体,第3次免疫后2周抗体最高滴度可达1∶1024,免疫后兔脾细胞受Gpd蛋白刺激有明显增殖反应。所诱导的抗体水平和脾淋巴细胞增殖情况均显著高于空质粒对照组和空白对照组(p<0.05)。Tp真核表达重组体pcDNA3.1( )-Gpd的成功构建及能刺激新西兰兔产生较强特异的免疫应答,为Gpd蛋白生物学功能及梅毒DNA疫苗的深入研究奠定了一定的实验基础。  相似文献   

19.
The outer membrane (OM) was isolated by detergent extraction from Treponema denticola ATCC 35405, ATCC 33521 and ATCC 35404, representing serovars a, b and c, respectively, as well as from two fresh isolates of T. denticola. Strict precautions were undertaken against the introduction of contaminant lipopolysaccharide when the OM was isolated. The OM was active in mitogenic stimulation of C3H/HeOuJ mouse spleen cultures, but to a somewhat lesser extent than purified lipopolysaccharide (LPS) from Escherichia coli 055:B5. Polymyxin B only partially inhibited the response. Unheated OM abrogated mitogenic activity of E. coli LPS, but heated preparations enhanced the mitogenic activity of E. coli LPS, suggesting the presence of a heat-labile cytolytic factor associated with T. denticola OM in addition to a putative lipopolysaccharide and/or heat-stable lipoprotein.  相似文献   

20.
Identification of Treponema pallidum rare outer membrane proteins (OMPs) has been a longstanding objective of syphilis researchers. We recently developed a consensus computational framework that employs a battery of cellular localization and topological prediction tools to generate ranked clusters of candidate rare OMPs (D. L. Cox et al., Infect. Immun. 78:5178-5194, 2010). TP0117/TP0131 (TprC/D), a member of the T. pallidum repeat (Tpr) family, was a highly ranked candidate. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning, and liposome incorporation confirmed that full-length, recombinant TprC (TprC(Fl)) forms a β-barrel capable of integrating into lipid bilayers. Moreover, TprC(Fl) increased efflux of terbium-dipicolinic acid complex from large unilamellar vesicles and migrated as a trimer by blue-native PAGE. We found that in T. pallidum, TprC is heat modifiable, trimeric, expressed in low abundance, and, based on proteinase K accessibility and opsonophagocytosis assays, surface exposed. From these collective data, we conclude that TprC is a bona fide rare OMP as well as a functional ortholog of Escherichia coli OmpF. We also discovered that TprC has a bipartite architecture consisting of a soluble N-terminal portion (TprC(N)), presumably periplasmic and bound directly or indirectly to peptidoglycan, and a C-terminal β-barrel (TprC(C)). Syphilitic rabbits generate antibodies exclusively against TprC(C), while secondary syphilis patients fail to mount a detectable antibody response against either domain. The syphilis spirochete appears to have resolved a fundamental dilemma arising from its extracellular lifestyle, namely, how to enhance OM permeability without increasing its vulnerability to the antibody-mediated defenses of its natural human host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号