首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and biological evaluation of libraries of 8-biarylchromen-4-ones enabled the elucidation of structure–activity relationships for inhibition of the DNA-dependent protein kinase (DNA-PK), with 8-(3-(thiophen-2-yl)phenyl)chromen-4-one and 8-(3-(thiophen-3-yl)phenyl)chromen-4-one being especially potent inhibitors.  相似文献   

2.
Introduction of an O-alkoxyphenyl substituent at the 8-position of the 2-morpholino-4H-chromen-4-one pharmacophore enabled regions of the ATP-binding site of DNA-dependent protein kinase (DNA-PK) to be probed further. Structure-activity relationships have been elucidated for inhibition of DNA-PK and PI3K (p110α), with N-(2-(cyclopropylmethoxy)-4-(2-morpholino-4-oxo-4H-chromen-8-yl)phenyl)-2-morpholinoacetamide 11a being identified as a potent and selective DNA-PK inhibitor (IC50 = 8 nM).  相似文献   

3.
We studied the effect of pre-incubation with NU7441, a specific inhibitor of DNA-dependent protein kinase (DNA-PK), on molecular mechanisms triggered by ionizing radiation (IR). The experimental design involved four groups of human T-lymphocyte leukaemic MOLT-4 cells: control, NU7441-treated (1 μM), IR-treated (1 Gy), and combination of NU7441 and IR. We used flow cytometry for apoptosis assessment, Western blotting and ELISA for detection of proteins involved in DNA repair signalling and epifluorescence microscopy for detection of IR-induced phosphorylation of histone H2A.X. We did not observe any major changes in the amount of DNA-PK subunits Ku70/80 caused by the combination of NU7441 and radiation. Their combination led to an increased phosphorylation of H2A.X, a hallmark of DNA damage. However, it did not prevent up-regulation of neither p53 (and its phosphorylation at Ser 15 and 392) nor p21. We observed a decrease in the levels of anti-apoptotic Mcl-1, cdc25A phosphatase, cleavage of PARP and a significant increase in apoptosis in the group treated with combination. In conclusion, the combination of NU7441 with IR caused increased phosphorylation of H2A.X early after irradiation and subsequent induction of apoptosis. It was efficient in MOLT-4 cells in 10× lower concentration than the inhibitor NU7026. NU7441 proved as a potent radio-sensitizing agent, and it might provide a platform for development of new radio-sensitizers in radiotherapy.  相似文献   

4.
DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme composed of a DNA-binding component called Ku70/80 and a catalytic subunit called DNA-PKcs. Many investigators have utilized DNA-PKcs-deficient cells and cell lines derived from severe combined immunodeficiency (scid) mice to study DNA repair and apoptosis. However, little is known about the CNS of these mice. This study was carried out using primary neuronal cultures derived from the cerebral hemispheres of new-born wild-type and scid mice to investigate the effects of loss of DNA-PK function on neuronal maturation and survival. Purified neuronal cultures developed comparably in terms of neurite formation and expression of neuronal markers, but scid cultures showed a significant increase in the percentage of dying cells. Furthermore, when apoptosis was induced by staurosporine, scid neurons died more rapidly and in higher numbers. Apoptotic scid neurons exhibited nuclear condensation, DNA fragmentation and caspase-3 activation, but treatment with the general caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-(O-methyl) fluoromethyl ketone did not prevent staurosporine-induced apoptosis. We conclude that a DNA-PK deficiency in cultured scid neurons may cause an accumulation of DNA damage and increased susceptibility to caspase-independent forms of programmed cell death.  相似文献   

5.
DNA-dependent protein kinase (DNA-PK) is activated in a two-step process whereby the Ku heterodimer first binds to the DNA double-strand breaks (dsbs) and then the DNA-PK catalytic subunit (cs) is recruited to form a repair complex. Oxidative stress is simultaneously generated along with DNA damage by ionizing radiation or chemotherapeutic agents whose impact on the DNA-PK activity has not previously been investigated. Here we show that the DNA damage-induced kinase activity of DNA-PK was modulated by oxidative stress, which was induced along with DNA dsbs in chlorambucil (Cbl)-exposed cells. Pretreatment with the antioxidants, 2(3)-t-butyl-4-hydroxyanisole or N-acetyl-l-cysteine enhanced the amount of DNA-PKcs phosphorylated at threonine 2609 (DNA-PKpThr2609) at the DNA dsbs and DNA-PK activity. Conversely, oxidative stress induced by l-buthionine (SR)-sulfoximine or glucose oxidase decreased the DNA-PK activity in Cbl-exposed cells. In addition, DNA-PKpThr2609 was poorly detectable at the site of DNA dsbs, as shown by colocalization to DNA-end-binding pH2AX or p53BP1. There was no change in the protein levels of DNA-PKcs, Ku70, or Ku86. Data from these studies provide the first evidence that oxidative stress effects posttranslational modification and assembly of DNA-PK complex at DNA dsbs, and thereby repair of DNA dsbs.  相似文献   

6.
A variety of environmental, carcinogenic, and chemotherapeutic agents form bulky lesions on DNA that activate DNA damage checkpoint signaling pathways in human cells. To identify the mechanisms by which bulky DNA adducts induce damage signaling, we developed an in vitro assay using mammalian cell nuclear extract and plasmid DNA containing bulky adducts formed by N-acetoxy-2-acetylaminofluorene or benzo(a)pyrene diol epoxide. Using this cell-free system together with a variety of pharmacological, genetic, and biochemical approaches, we identified the DNA damage response kinases DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM) as bulky DNA damage-stimulated kinases that phosphorylate physiologically important residues on the checkpoint proteins p53, Chk1, and RPA. Consistent with these results, purified DNA-PK and ATM were directly stimulated by bulky adduct-containing DNA and preferentially associated with damaged DNA in vitro. Because the DNA damage response kinase ATM and Rad3-related (ATR) is also stimulated by bulky DNA adducts, we conclude that a common biochemical mechanism exists for activation of DNA-PK, ATM, and ATR by bulky adduct-containing DNA.  相似文献   

7.
Repair of DNA double-strand breaks by the non-homologous end-joining pathway (NHEJ) requires a minimal set of proteins including DNA-dependent protein kinase (DNA-PK), DNA-ligase IV and XRCC4 proteins. DNA-PK comprises Ku70/Ku80 heterodimer and the kinase subunit DNA-PKcs (p460). Here, by monitoring protein assembly from human nuclear cell extracts on DNA ends in vitro, we report that recruitment to DNA ends of the XRCC4-ligase IV complex responsible for the key ligation step is strictly dependent on the assembly of both the Ku and p460 components of DNA-PK to these ends. Based on co-immunoprecipitation experiments, we conclude that interactions of Ku and p460 with components of the XRCC4-ligase IV complex are mainly DNA-dependent. In addition, under p460 kinase permissive conditions, XRCC4 is detected at DNA ends in a phosphorylated form. This phosphorylation is DNA-PK-dependent. However, phosphorylation is dispensable for XRCC4-ligase IV loading to DNA ends since stable DNA-PK/XRCC4-ligase IV/DNA complexes are recovered in the presence of the kinase inhibitor wortmannin. These findings extend the current knowledge of the assembly of NHEJ repair proteins on DNA termini and substantiate the hypothesis of a scaffolding role of DNA-PK towards other components of the NHEJ DNA repair process.  相似文献   

8.
Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.  相似文献   

9.
Artemis is a nuclear phosphoprotein required for genomic integrity whose phosphorylation is increased subsequent to DNA damage. Artemis phosphorylation by the DNA-dependent protein kinase (DNA-PK) and the association of Artemis with DNA-PK catalytic subunit (DNA-PKcs) have been proposed to be crucial for the variable, diversity, joining (V(D)J) reaction, genomic stability and cell survival in response to double-stranded DNA breaks. The exact nature of the effectors of Artemis phosphorylation is presently being debated. Here, we have delimited the interface on Artemis required for its association with DNA-PKcs and present the characterization of six DNA-PK phosphorylation sites on Artemis whose phosphorylation shows dependence on its association with DNA-PKcs and is induced by double-stranded DNA damage. Surprisingly, DNA-PKcs Artemis association appeared to be dispensable in a V(D)J recombination assay with stably integrated DNA substrates. Phosphorylation at two of the sites on Artemis, S516 and S645, was verified in vivo using phosphospecific antibodies. Basal Artemis S516 and S645 phosphorylation in vivo showed a significant dependence on DNA-PKcs association. However, regardless of its association with DNA-PKcs, phosphorylation of Artemis at both S516 and S645 was stimulated in response to the double-stranded DNA-damaging agent bleomycin, albeit to a lesser extent. This suggests that additional factors contribute to promote DNA damage-induced Artemis phosphorylation. Intriguingly, pS516/pS645 Artemis was concentrated in chromatin-associated nuclear foci in na?ve cells. These foci were maintained upon DNA damage but failed to overlap with the damage-induced gammaH2AX. These results provide the expectation of a specific role for DNA-PK-phosphorylated Artemis in both na?ve and damaged cells.  相似文献   

10.
  1. Download : Download high-res image (259KB)
  2. Download : Download full-size image
  相似文献   

11.
Caffeine inhibits cell cycle checkpoints, sensitizes cells to ionizing radiation-induced cell killing and inhibits the protein kinase activity of two cell cycle checkpoint regulators, Ataxia-Telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). In contrast, caffeine has been reported to have little effect on the protein kinase activity of the DNA-dependent protein kinase (DNA-PK), which is essential for the repair of DNA double-strand breaks. Previously, we reported that DNA-PK phosphorylates Thr21 of the 32 kDa subunit of replication protein A (RPA32) in response to camptothecin. In this report we demonstrate that the camptothecin-induced phosphorylation of RPA32 on Thr21 is inhibited by 2 mM caffeine. In addition, we show that caffeine inhibits immunoprecipitated and purified DNA-PK, as well as DNA-PK in cell extracts, with an IC50 of 0.2–0.6 mM. Caffeine inhibited DNA-PK activity through a mixed non-competitive mechanism with respect to ATP. In contrast, 10-fold higher concentrations of caffeine were required to inhibit DNA-PK autophosphorylation in vitro and caffeine failed to inhibit DNA-PKcs dependent double-strand break repair in vivo. These data suggest that while DNA-PK does not appear to be the target of caffeine-induced radiosensitization, caffeine cannot be used to differentiate between ATM, ATR and DNA- PK-dependent substrate phosphorylation in vivo.  相似文献   

12.
Muller C  Calsou P  Frit P  Salles B 《Biochimie》1999,81(1-2):117-125
The DNA-dependent protein kinase (DNA-PK) is a trimeric nuclear serine/threonine protein kinase consisting of a large catalytic sub-unit and the Ku heterodimer that regulates kinase activity by its association with DNA. DNA-PK is a major component of the DNA double strand break repair apparatus, and cells deficient in one of its component are hypersensitive to ionizing radiation. DNA-PK is also required to lymphoid V(D)J recombination and its absence confers in mice a severe combined immunodeficiency phenotype. The purpose of this review is to summarize the current knowledge on the mechanisms that contribute to regulate DNA-PK activity in vivo or in vitro and relates them to the role of DNA-PK in cellular functions. Finally, the studies devoted to drug-inhibition of DNA-PK in order to enhance cancer therapy by DNA-damaging agents are presented.  相似文献   

13.
DNA double strand breaks (DSB) are among the most lethal forms of DNA damage and, in humans, are repaired predominantly by the non-homologous end joining (NHEJ) pathway. NHEJ is initiated by the Ku70/80 heterodimer binding free DNA termini and then recruiting the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form the catalytically active DNA-PK holoenzyme. The extreme C-terminus of Ku80 (Ku80CTD) has been shown to be important for in vitro stimulation of DNA-PK activity and NHEJ in vivo. To better define the mechanism by which the Ku80CTD elicits these activities, we assessed its functional and physical interactions with DNA-PKcs and Ku70/80. The results demonstrate that DNA-PKcs activity could not be complemented by addition of a Ku80CTD suggesting that the physical connection of the C-terminus to the DNA binding domain of Ku70/80 is required for DNA -PKcs activation. Analysis of protein-protein interactions revealed a low but measurable binding of the Ku80CTD for Ku70/80ΔC and for DNA-PKcs while dimer formation and the formation of higher ordered structures of the Ku80CTD was readily apparent. Ku has been shown to tether DNA termini possibly due to protein/protein interactions. Results demonstrate that the presence of the Ku80CTD stimulates this activity possibly through Ku80CTD/Ku80CTD interactions.  相似文献   

14.
Expression of DNA-dependent protein kinase in human granulocytes   总被引:3,自引:0,他引:3  
Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNAPK in PMN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration. In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.  相似文献   

15.
Replacement of the core heterocycle of a defined series of chromen-4-one DNA-PK inhibitors by the isomeric chromen-2-one (coumarin) and isochromen-1-one (isocoumarin) scaffolds was investigated. Structure–activity relationships for DNA-PK inhibition were broadly consistent, albeit with a reduction of potency compared with the parent chromenone.  相似文献   

16.
Alkaline phosphatase (AP) isozymes are present in a wide range of species from bacteria to man and are capable of dephosphorylation and transphosphorylation of a wide spectrum of substrates in vitro. In humans, four AP isozymes have been identified—one tissue-nonspecific (TNAP) and three tissue-specific—named according to the tissue of their predominant expression: intestinal (IAP), placental (PLAP) and germ cell (GCAP) APs. Modulation of activity of the different AP isozymes may have therapeutic implications in distinct diseases and cellular processes. For instance, changes in the level of IAP activity can affect gut mucosa tolerance to microbial invasion due to the ability of IAP to detoxify bacterial endotoxins, alter the absorption of fatty acids and affect ectopurinergic regulation of duodenal bicarbonate secretion. To identify isozyme selective modulators of the human and mouse IAPs, we developed a series of murine duodenal IAP (Akp3-encoded dIAP isozyme), human IAP (hIAP), PLAP, and TNAP assays. High throughput screening and subsequent SAR efforts generated a potent inhibitor of dIAP, ML260, with specificity for the Akp3-, compared to the Akp5- and Akp6-encoded mouse isozymes.  相似文献   

17.
Anaplastic lymphoma kinase (ALK) receptor tyrosine kinase is considered an attractive therapeutic target for human cancers, especially non-small cell lung cancer (NSCLC). Our previous study revealed that 8,9-side-chains of 6,6-dimethyl-11-oxo-6,11-dihydro-5H-benzo[b]carbazole scaffold crucially affected kinase selectivity, cellular activity, and metabolic stability. In this work, we optimized the side-chains and identified highly selective, orally active and potent ALK inhibitor CH5424802 (18a) as the clinical candidate.  相似文献   

18.
Benzobisthiazole derivatives were identified as novel helicase inhibitors through high throughput screening against purified Staphylococcus aureus (Sa) and Bacillus anthracis (Ba) replicative helicases. Chemical optimization has produced compound 59 with nanomolar potency against the DNA duplex strand unwinding activities of both B. anthracis and S. aureus helicases. Selectivity index (SI = CC50/IC50) values for 59 were greater than 500. Kinetic studies demonstrated that the benzobisthiazole-based bacterial helicase inhibitors act competitively with the DNA substrate. Therefore, benzobisthiazole helicase inhibitors represent a promising new scaffold for evaluation as antibacterial agents.  相似文献   

19.
This communication describes the discovery of a novel series of Aurora kinase inhibitors. Key SAR and critical binding elements are discussed. Some of the more advanced analogues potently inhibit cellular proliferation and induce phenotypes consistent with Aurora kinase inhibition. In particular, compound 21 (SNS-314) is a potent and selective Aurora kinase inhibitor that exhibits significant activity in pre-clinical in vivo tumor models.  相似文献   

20.
Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation induced DNA double strand breaks (DSBs) in human cells. Critical to NHEJ is the DNA-dependent interaction of the Ku70/80 heterodimer with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form the DNA-PK holoenzyme. However, precisely how Ku recruits DNA-PKcs to DSBs ends to enhance its kinase activity has remained enigmatic, with contradictory findings reported in the literature. Here we address the role of the Ku80 C-terminal region (CTR) in the DNA-dependent interaction of Ku70/80 with DNA-PKcs using purified components and defined DNA structures. Our results show that the Ku80 CTR is required for interaction with DNA-PKcs on short segments of blunt ended 25 bp dsDNA or 25 bp dsDNA with a 15-base poly dA single stranded (ss) DNA extension, but this requirement is less stringent on longer dsDNA molecules (35 bp blunt ended dsDNA) or 25 bp duplex DNA with either a 15-base poly dT or poly dC ssDNA extension. Moreover, the DNA-PKcs-Ku complex preferentially forms on 25 bp DNA with a poly-pyrimidine ssDNA extension.Our work clarifies the role of the Ku80 CTR and dsDNA ends on the interaction of DNA-PKcs with Ku and provides key information to guide assembly and biology of NHEJ complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号