首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
《Bioresource technology》2000,71(2):113-123
Representative samples of soft, low density, group 1 (rice straw, rice hulls, sugarcane bagasse) and hard, high density, group 2 agricultural by-products (pecan shells) were converted into granular activated carbons (GACs). GACs were produced from group 1 and 2 materials by physical activation or from group 2 materials by chemical activation. Carbons were evaluated for their physical (hardness, bulk density), chemical (ash, conductivity, pH), surface (total surface area), and adsorption properties (molasses color removal, sugar decolorization) and compared with two commercial reference carbons. The results show that the type of by-product, binder, and activation method determine the properties of GACs. Regardless of the binder, sugarcane bagasse showed a better potential than rice straw or rice hulls as precursor of GACs with the desirable properties of a sugar decolorizing carbon. Pecan shells produced GACs that were closest to the reference carbons in terms of all the properties investigated.  相似文献   

2.
The objectives of this study were to evaluate selected physical and chemical properties of agricultural byproduct-based activated carbons made from pecan shells and sugarcane bagasse, and compare those properties to a commercial coal-based activated carbon as well as to compare the adsorption efficiency of these carbons for geosmin. Comparison of the physical and chemical properties of pecan shell- and bagasse-based carbons to the commercial carbon, Calgon Filtrasorb 400, showed that pecan shell carbon, but not the bagasse carbon, compared favorably to Filtrasorb 400, especially in terms of surface area, bulk density, ash and attrition. A carbon dosage study done in a model system showed the amount of geosmin adsorbed to be greater for Filtrasorb 400 and the bagasse-based carbon at low carbon concentrations than for the pecan shell carbons, but geosmin adsorption was similar in all carbons at higher carbon dosages. Application of the Freundlich isotherm model to the adsorption data showed that carbons made by steam activation of pecan shells or sugarcane bagasse had geosmin adsorption characteristics most like those of the commercial carbon. In terms of physical, chemical and adsorptive properties, steam-activated pecan shell carbon most resembled the commercial carbon and has the potential to replace Filtrasorb 400 in applications involving removal of geosmin from aqueous environments.  相似文献   

3.
The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.  相似文献   

4.
Sugar syrup decolorization was studied using two commercial and eight beet pulp based activated carbons. In an attempt to relate decolorizing performances to other characteristics, surface areas, pore volumes, bulk densities and ash contents of the carbons in the powdered form; pH and electrical conductivities of their suspensions and their color adsorption properties from iodine and molasses solution were determined. The color removal capabilities of all carbons were measured at 1/100 (w/w) dosage, and isotherms were determined on better samples. The two commercial activated carbons showed different decolorization efficiencies; which could be related to their physical and chemical properties. The decolorization efficiency of beet pulp carbon prepared at 750 degrees C and activated for 5h using CO2 was much better than the others and close to the better one of the commercial activated carbons used. It is evident that beet pulp is an inexpensive potential precursor for activated carbons for use in sugar refining.  相似文献   

5.
The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon.  相似文献   

6.
Activated carbons were prepared from pecan shell by phosphoric acid activation. The pore structure and acidic surface groups of these carbons were characterized by nitrogen adsorption, Boehm titration and transmittance Fourier infrared spectroscopy (FTIR) techniques. The characterization results demonstrated that the development of pore structure was apparent at temperatures 250 degrees C, and reached 1130m(2)/g and 0.34cm(3)/g, respectively, at 500 degrees C. Impregnation ratio and soaking time at activation temperature also affected the pore development and pore size distribution of final carbon products. At an impregnation ratio of 1.5, activated carbon with BET surface area and micropore volume as high as 861m(2)/g and 0.289cm(3)/g was obtained at 400 degrees C. Microporous activated carbons were obtained in this study. Low impregnation ratio (less than 1.5) and activation temperature (less than 300 degrees C) are favorable to the formation of acidic surface functional groups, which consist of temperature-sensitive (unstable at high temperature) and temperature-insensitive (stable at high temperature) two parts. The disappearance of temperature-sensitive groups was significant at temperature 300 degrees C; while the temperature-insensitive groups are stable even at 500 degrees C. FTIR results showed that the temperature-insensitive part was mostly phosphorus-containing groups as well as some carbonyl-containing groups, while carbonyl-containing groups were the main contributor of temperature-sensitive part.  相似文献   

7.
The present study was designed to model the adsorption of geosmin from water under laboratory conditions using the Freundlich isotherm model. This model was used to compare the efficiency of sugarcane bagasse and pecan shell-based powdered activated carbon to the efficiency of a coal-based commercial activated carbon (Calgon Filtrasorb 400). When data were generated from Freundlich isotherms, Calgon Filtrasorb 400 had greater geosmin adsorption at all geosmin concentrations studied than the laboratory produced steam-activated pecan shell carbon, steam-activated bagasse carbon, and the CO2-activated pecan shell carbon. At geosmin concentrations < 0.07 microg/l for the phosphoric acid-activated pecan shell carbon and below 0.08 microg/l for a commercially produced steam-activated pecan shell carbon obtained from Scientific Carbons, these two carbons had a higher calculated geosmin adsorption than Filtrasorb 400. While the commercial carbon was more efficient than some laboratory prepared carbons at most geosmin concentrations, the results indicate that when the amount of geosmin was below the threshold level of human taste (about 0.10 microg/l), the phosphoric acid-activated pecan shell carbon and the Scientific Carbons sample were more efficient than Filtrasorb 400 at geosmin removal.  相似文献   

8.
A series of phosphoric-acid activated carbons were made from almond shells using six different activation or activation/oxidation methods. The carbons were compared to each other and to two commercial carbons in an effort to ascertain the relative value of the carbons in terms of yield, surface area, attrition, surface functional groups, organic uptake, metal uptake, as well as estimated cost of production. Of the six methods investigated, the method that produced the best overall performing almond shell carbon and least expensive carbon in terms of production cost was the “Air-Activation” method. This method involved the simultaneous activation and oxidation of almond shells under an air atmosphere.  相似文献   

9.
Physico-chemical properties of a bioorganic char were modified by pyrolysis in the presence of NaOH, and with subsequent physical activation of carbonaceous species with CO2 a value-added activated carbon was fabricated. Bioorganic char is produced as a co-product during the production of bio-fuel from the pyrolysis of chicken litter. Untreated char contains approximately 37 wt% of C and approximately 43-45 wt% of inorganic minerals containing K, Ca, Fe, P, Cu, Mg, and Si. Carbonization and chemical activation of the char at 600 degrees C in the presence of NaOH in forming gas (4% H2 balanced with Ar) produced mainly demineralized activated carbon having BET (Brunauer, Emmett, and Teller) surface area of 486 m2/g and average pore size of 2.8 nm. Further physical activation with CO2 at 800 degrees C for 30 min resulted in activated carbon with BET surface area of 788 m2/g and average pore size of 2.2 nm. The mineral content was 10 wt%. X-ray photoelectron spectroscopy (XPS) indicated that the latter activation process reduced the pyrrolic- and/or pyridonic-N, increased pyridinic-N and formed quaternary-N at the expense of pyrrolic- and/or pyridonic-N found in the untreated char.  相似文献   

10.
Olive husk was used for the preparation of activated carbon by chemical activation with KOH. The effects of carbonization and activation time on carbon properties were evaluated. The surface area of the produced carbons was measured by means of N(2) adsorption at 77K. The carbons with the highest surface area were further characterized by means of elemental analysis, particle size measurement, Boehm titration, zeta potential measurement, and temperature programmed desorption (TPD). Subsequently they were used for adsorption of a mixture of polyphenols consisting of caffeic acid, vanillin, vanillic acid, pi-hydroxybenzoic acid and gallic acid at two temperatures, and their adsorptive capacity was compared to a commercial carbon Acticarbon CX and found to be higher enough. The role of the porosity and surface groups are discussed in relation to the adsorption forces and the properties of the adsorbed substances. A thermodynamic interpretation of the results is also attempted.  相似文献   

11.
Activated carbons belong to the most widely used adsorbent materials. The utility of these materials mainly depends on their chemical surface and porous structure. The method of activation and the nature of the used precursor greatly influence the pore structure and surface functional groups of the activated carbon. Therefore, the main objective of current investigations is to develop or modify the activation method in an optimal manner using appropriate precursors. This review compiles the results of various studies on the synthesis of activated carbons from agricultural waste. Various activation methods, such as physical, chemical, physicochemical, and microwave activation, are discussed. The effects of carbonization and activation parameters, such as temperature, activating agent, and residence time, toward the properties of the activated carbon are reviewed.  相似文献   

12.
Activated carbons have been prepared from olive kernels and their adsorptive characteristics were investigated. A two stage process of pyrolysis-activation has been tested in two scales: (a) laboratory scale pyrolysis and chemical activation with KOH and (b) pilot/bench scale pyrolysis and physical activation with H(2)O-CO(2). In the second case, olive kernels were first pyrolysed at 800 degrees C, during 45 min under an inert atmosphere in an industrial pyrolyser with a throughput of 1t/h (Compact Power Ltd., Bristol, UK). The resulting chars were subsequently activated with steam and carbon dioxide mixtures at 970 degrees C in a batch pilot monohearth reactor at NESA facility (Louvain-la Neuve, Belgium). The active carbons obtained from both scales were characterized by N(2) adsorption at 77 K, methyl-blue adsorption (MB adsorption) at room temperature and SEM analysis. Surface area and MB adsorption were found to increase with the degree of burn-off. The maximum BET surface area was found to be around 1000-1200 m(2)/g for active carbons produced at industrial scale with physical activation, and 3049 m(2)/g for active carbons produced at laboratory with KOH activation. The pores of the produced carbons were composed of micropores at the early stages of activation and both micropores and mesopores at the late stages. Methylene blue removal capacity appeared to be comparable to that of commercial carbons and even higher at high degrees of activation.  相似文献   

13.
In the present study, granular activated carbons were prepared from agricultural waste corn cob by chemical activation with potassium salts and/or physical activation with CO2. Under the experimental conditions investigated, potassium hydroxide (KOH) and potassium carbonate (K2CO3) were effective activating agents for chemical activation during a ramping period of 10 degrees C/min and subsequent gasification (i.e., physical activation) at a soaking period of 800 degrees C. Large BET surface areas (>1,600 m2/g) of activated carbons were thus obtained by the combined activation. In addition, this study clearly showed that the porosity created in the acid-unwashed carbon products is substantially lower than that of acid-washed carbon products due to potassium salts left in the pore structure.  相似文献   

14.
A series of experiments is presented that establishes for the first time the role of some of the key design parameters of porous carbons including surface area, pore volume, and pore size on battery performance. A series of hierarchical porous carbons is used as a model system with an open, 3D, interconnected porous framework and highly controlled porosity. Specifically, carbons with surface areas ranging from ≈500–2800 m2 g?1, pore volume from ≈0.6–5 cm3 g?1, and pore size from micropores (≈1 nm) to large mesopores (≈30 nm) are synthesized and tested. At high sulfur loadings (≈80 wt% S), pore volume is more important than surface area with respect to sulfur utilization. Mesopore size, in the range tested, does not affect the sulfur utilization. No relationship between porosity and long‐term cycle life is observed. All systems fail after 200–300 cycles, which is likely due to the consumption of the LiNO3 additive over cycling. Moreover, cryo‐scanning transmission electron microscopy imaging of these carbon–sulfur composites combined with X‐ray diffraction (XRD) provides further insights into the effect of initial sulfur distribution on sulfur utilization while also revealing the inadequacy of the indirect characterization techniques alone in reliably predicting distribution of sulfur within porous carbon matrices.  相似文献   

15.
Foo KY  Hameed BH 《Bioresource technology》2011,102(20):9814-9817
Rice husk (RH), an abundant by-product of rice milling, was used for the preparation of activated carbon (RHAC) via KOH and K(2)CO(3) chemical activation. The activation process was performed at the microwave input power of 600 W for 7 min. RHACs were characterized by low temperature nitrogen adsorption/desorption, scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption behavior was examined using methylene blue as adsorbate. The K(2)CO(3)-activated sample showed higher yield and better pore structures and adsorption capacity development than the KOH-activated sample, with a BET surface area, total pore volume and monolayer adsorption capacity of 1165 m(2)/g, 0.78 cm(3)/g and 441.52 mg/g, respectively. The results revealed the feasibility of microwave heating for preparation of high surface area activated carbons from rice husks via K(2)CO(3) activation.  相似文献   

16.
Lignin--from natural adsorbent to activated carbon: a review   总被引:4,自引:0,他引:4  
The present review compiles the work done over the last few decades on the use of lignin and lignin-based chars and activated carbons as adsorbents for the removal of substances from water and focuses on the utilisation of lignin as adsorbent, its conversion to chars and activated carbons and the use of these materials as adsorbents. Moreover, the review also examines the textural and surface chemical properties of lignin-based activated carbons. The work so far carried out indicates that lignin is relatively non-reactive and probably the component of lignocellulosic precursors primarily responsible for the microporosity of activated carbons. Under appropriate conditions of activation it is possible to obtain materials with surface areas and pore volumes approaching 2000 m(2)g(-1) and 1cm(3)g(-1), respectively, and these materials have capacities for the aqueous phase adsorption of metallic pollutants that are comparable to those of commercial activated carbons. Relatively little work has so far been published and there is considerable scope for more detailed studies on the preparation, characterisation and adsorption applications of lignin-based activated carbons.  相似文献   

17.
Sisal waste was used as precursor to prepare carbons by chemical activation. The influence of the K2CO3 amount and activation temperature on the materials textural properties were studied through N2 and CO2 adsorption assays. As the severity of the treatment increases there is a development of supermicropores, and the micropore size distribution changes from mono to bimodal. A carbon with an apparent surface area of 1038 m2 g−1 and pore volume of 0.49 cm3 g−1 was obtained. TPD results showed the incidence in acidic type groups although the pHPZC reveals an almost neutral character of the surface. Adsorption kinetic data of ibuprofen and paracetamol show that the processes obey to a pseudo-second order kinetic equation. Regarding the removal efficiency the prepared samples attained values comparable to a commercial carbon (>65%), revealing that chemical activation of sisal wastes with K2CO3 allows obtaining samples suitable for pharmaceutical compounds removal from liquid phase.  相似文献   

18.
In this work a novel biomass precursor for the production of activated carbons (AC) was studied. The lignocellulosic material used as precursor is the coffee bean endocarp, which constitutes an industrial residue from the Portuguese coffee industry. Activation by carbon dioxide and potassium hydroxide produces activated carbons with small external areas and pore volumes up to 0.22 and 0.43cm3g(-1), respectively, for CO2 and KOH activation. All the AC's produced are very basic in nature with point of zero charge higher than 8. SEM/EDX studies indicate the presence of K, O, Ca and Si. By FTIR it was possible to identify the formation on the AC's surface of several functional groups, namely phenol, alcohol, quinone, lactone, pyrone and ether as well as SiH groups. The tailoring of the porous and chemical structure of the activated carbons produced is possible by selecting the appropriate production conditions.  相似文献   

19.
Activated carbons were prepared from sewage sludge by chemical activation. Pyrolusite was added as a catalyst during activation and carbonization. The influence of the mineral addition on the properties of the activated carbons produced was evaluated. The results show that activated carbons from pyrolusite-supplemented sewage sludge had up to a 75% higher BET surface area and up to a 66% increase in mesoporosity over ordinary sludge-based activated carbons. Batch adsorption experiments applying the prepared adsorbents to synthetic dye wastewater treatment yielded adsorption data well fitted to the Langmuir isotherm. The adsorbents from pyrolusite-supplemented sludges performed better in dye removal than those without mineral addition, with the carbon from pyrolusite-augmented sludge T2 presenting a significant increase in maximum adsorption capacity of 50 mg/g. The properties of the adsorbents were improved during pyrolusite-catalyzed pyrolysis via enhancement of mesopore production, thus the mesopore channels may provide fast mass transfer for large molecules like dyes.  相似文献   

20.
Dried cattle-manure compost was pyrolyzed by a one-step process to obtain activated carbon using chemical activation by zinc chloride. The influence of activation parameters such as ZnCl(2) to cattle-manure compost (ZnCl(2)/CMC) ratio, activation temperature and retention time on the final products was investigated. The resultant activated carbons were characterized by nitrogen adsorption-desorption isotherms at 77 K. The results showed that the surface area and pore volume of activated carbons, which were estimated by BET and t-plot methods, were achieved as high as 2170 m(2)/g and 1.70 cm(3)/g in their highest value, respectively. Thermogravimetric analysis (TGA) was carried out to monitor the pyrolysis process of cattle-manure compost (CMC) and ZnCl(2) impregnated one (ZnCl(2)/CMC). The capabilities of phenol adsorption were also examined for the CMC carbons prepared with various treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号