首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 810 毫秒
1.
采用单因素实验,分别研究提取试剂、发酵液放置时间、pH值和温度对发酵液中多拉菌素提取效果的影响;然后以乙酸乙酯为萃取试剂,研究萃取次数及萃取体积对多拉菌素萃取效果的影响。结果显示,甲醇为最佳提取试剂;发酵液在pH为3~11、温度为20~80℃的条件下放置144 h,多拉菌素均能稳定存在,提取得到的多拉菌素的质量浓度没有显著变化;浓缩提取液液经2倍体积乙酸乙酯萃取2次即可。该条件下多拉菌素的质量浓度和萃取率分别为151.78μg/mL和98.00%。  相似文献   

2.
研究了不同发酵条件对于产吲哚金黄杆菌(Chryseobacterium indologenes)生产蛋白质谷氨酰胺酶能力的影响,酶的分离和初步的应用。通过考察种子的生长曲线,发酵的温度、转速、摇瓶装液量,碳源和氮源,得出最大产酶能力的发酵条件为:30℃,200r/min,装液量25ml/250ml,蔗糖为碳源,多聚蛋白胨为氮源,发酵10~12h。初步分离研究表明在4倍超滤浓缩和4倍乙醇沉淀条件下,酶活力回收率均为最高,分别为84.99%和76.07%。该酶与酪蛋白37℃温育2h时,酪蛋白的脱酰胺度为41.03%,到24h后,脱酰胺度不再增加,并且酪蛋白的溶解性也有所增加。  相似文献   

3.
A novel mixed substrate solid-state fermentation (SSF) process has been developed for Aspergillus niger MTCC 2594 using wheat bran (WB) and gingelly oil cake (GOC) and the results showed that addition of GOC to WB (WB : GOC, 3 : 1, w/w) increased the lipase activity by 36.0% and the activity was 384.3+/-4.5 U/g dry substrate at 30 degrees C and 72 h. Scale up of lipase production to 100 g and 1 kg tray-level batch fermentation resulted in 95.0% and 84.0% of enzyme activities respectively at 72 h. A three-stage multiple contact counter-current extraction yielded 97% enzyme recovery with a contact time of 60 min. However, extraction by simple percolation and plug-flow methods resulted in decreased enzyme recoveries. The mixed substrate SSF process has resulted in a significant increase in specific activity (58.9%) when compared to a submerged fermentation (SmF) system. Furthermore, an efficient process of extraction has been standardized with this process. Use of GOC along with WB as potential raw materials for enzyme production could be of great commercial significance. This is the first report on the production and extraction of lipase from Aspergillus niger using mixed solid substrates, WB and GOC, which are potential raw materials for the production of enzymes and other value-added products.  相似文献   

4.
黑曲霉固态发酵苹果渣产β-甘露聚糖酶的工艺优化   总被引:1,自引:0,他引:1  
目的:对黑曲霉SL-08固态发酵苹果渣生产β-甘露聚糖酶的生产工艺进行优化,旨在探寻苹果渣的综合利用方式,降低β-甘露聚糖酶的生产成本。方法:采用Plackett-Burman试验设计和响应面法进行优化。结果:最佳培养基组成为苹果渣与棉粕1∶1(w/w)、尿素2%(w/w)、KH2PO40.1%(w/w)、初始含水率59%(w/w)、CaCl20.2%(w/w)、MgCl20.1%(w/w),30℃恒温培养48h,β-甘露聚糖酶酶活力可达539U/g干曲,比基础培养基提高了28.3%,达到了以豆粕与麸皮为生产原料时的产酶水平。结论:采用黑曲霉SL-08对苹果渣进行固态发酵是一种有效的生物转化方式,既可用于β-甘露聚糖酶的生产,取代豆粕与麸皮等常规原料,降低生产成本;也可以对苹果渣进行综合利用。  相似文献   

5.
The empirical models developed through two independent RSM (RSM-I, 2(3); RSM-II, 2(5)) in terms of effective operational factors of inoculum age, inoculum volume, wheat bran-to-moisture ratio (RSM-I) and contact time, extraction temperature, agitation, fermented bran-to-solvent ratio and SDS (RSM-II) were found adequate to describe the optimization of exo-polygalacturonase from Bacillus subtilis RCK under solid-state fermentation (SSF) conditions. Through the analysis of RSM-I, wheat bran-to-moisture ratio and inoculum volume were found to be the most significant factors and an increment in both had a positive effect in enhancing enzyme yield, while in RSM-II all the factors significantly affected enzyme recovery except fermented bran-to-solvent ratio, which had the least impact within the ranges investigated in enhancing enzyme recovery. Based on contour plots and variance analysis, optimum operational conditions for maximum exo-polygalacturonase yield were achieved when 1.5% (v/w) of 24h old (OD(600 nm) approximately 2.7+/-0.2) B. subtilis RCK cells were inoculated on moistened wheat bran (1:7 solid substrate-to-moisture ratio) and enzyme was harvested by addition of solvent (1:6 fermented bran-to-solvent ratio) under shaking conditions (200 rpm) in presence of SDS (0.25% w/v) for 15 min at 35 degrees C. An over all 3.4 fold (1.7-fold RSM-I; 2.0 fold RSM-II) increase in enzyme production was attained because of optimization by RSM.  相似文献   

6.
为研究牛樟芝固态发酵菌丝体中三萜和多糖的最佳提取工艺,选取浸提时间、料液比和提取温度3个因素,分别设置3个水平,以三萜和多糖得率为指标,并采用正交试验法进行分析。结果表明,三萜的最佳提取工艺条件为:浸提时间3 h、料液比1∶30 (g·mL-1)、温度70 ℃,在此条件下,得率为3.43%;多糖的最佳提取工艺为:浸提时间2 h、料液比1∶20 (g·mL-1)、温度95 ℃,在此条件下得率为4.71%。研究结果为牛樟芝固态发酵菌丝体中三萜和多糖的提取工艺提供了参考。  相似文献   

7.
[目的] 研究樟绒枝霉(Malbranchea cinnamomea) CAU521利用农业废弃物固体发酵产木聚糖酶的发酵条件.[方法]采用单因素试验法优化影响菌株产酶的各个条件,包括碳源种类、氮源种类、初始pH、初始水分含量、培养温度及发酵时间共6个因素.[结果]获得的最佳产酶条件为:稻草为发酵碳源、2%(W/W)的酵母提取物为氮源、初始pH 7.0、初始水分含量80%和发酵温度45℃.在此条件下发酵6d后木聚糖酶的酶活力达到13 120 U/g干基碳源.[结论]樟绒枝霉固体发酵产木聚糖酶的产酶水平高,生产成本低,具有潜在的工业化应用前景.  相似文献   

8.
Optimization of solid substrate fermentation of wheat straw   总被引:9,自引:0,他引:9  
Optimal conditions for solid substrate fermentation of wheat straw with Chaetomium cellulolyticum in laboratory-scale stationary layer fermenters were developed. The best pretreatment for wheat straw was ammonia freeze explosion, followed by steam treatment, alkali treatment, and simple autoclaving. The optimal fermentation conditions were 80% (w/w) moisture content; incubation temperature of 37 degrees C; 2% (w/w) unwashed mycelial inoculum; aeration at 0.12 L/h/g; substrate thickness of 1 to 2 cm; and duration of three days. Technical parameters for this optimized fermentation were: degree of substance utilization, 27.2%; protein yield/substrate, 0.09 g; biomass yield/bioconverted substrate, 0.40 g; degree of bioconversion of total available sugars in the substrate, 60.5%; specific efficiency of bioconversion, 70.8%; and overall efficiency of biomass production from substrate, 42.7%. Mixed culturing of Candida utilis further increased biomass production by 20%. The best mode of fermentation was a semicontinuous fed-batch fermentation where one-half of the fermented material was removed at three-day intervals and replaced by fresh substrate. In this mode, protein production was 20% higher than in batch mode, protein productivity was maintained over 12 days, and sporulation was prevented.  相似文献   

9.
Optimization of five parameters (initial moisture, initial pH, incubation temperature, inoculum ratio and fermentation period), as per central composite rotable design falling under the response surface methodology, was attempted in a total of 32 experimental sets, after fitting the experimental data to the polynomial model of a suitable degree, for tannin acyl hydrolase production by Aspergillus niger PKL 104 in solid state fermentation system. The quantitative relation between the enzyme production and different levels of these factors was exploited to work out optimized levels of these parameters by flexible polyhedron search method and confirmed by further experimentations. The best set required 5% inoculum, 6.5 initial pH, 28 °C fermentation temperature, 62% initial moisture and 3 days fermentation time. The optima were worked out under the additional constraints for temperature ( 30 °C) and fermentation time (not more than 3 days) which are essential from industrial conditions and to pre-empt contamination, respectively. The best set resulted in 1.34 times more enzyme production than that was obtained before this optimization. Three dimensional plots, relating the enzyme production to paired factors (when other three factors were kept at their optimal levels) best described the behaviour of solid state fermentation system and the interactions between factors under optimized conditions. The model showed that the enzyme production was affected by all the five factors studied. The initial pH exhibited a positive interaction with moisture but no interaction with other factors. Initial moisture level and inoculum ratio showed negative interaction in contrast to positive interaction between inoculum ratio and fermentation period. It is thus apparent that the response surface methodology not only gives valuable information on interactions between the factors but also leads to identification of feasible optimum values of the studied factors, in addition to 99% (or more) savings on resources as compared to a full factorial traditional optimization method. Response surface methods have not been used earlier for optimizing parameters in solid state fermentation system.The authors thank Dr. S. R. Bhowmik, Director, CFTRI for the interest shown in the work. P. K. Lekha is thankful to the Council of Scientific and Industrial Research, New Delhi, India, for the award of a research fellowship.  相似文献   

10.
A novel fungal strain, Aspergillus ficuum Gim 3.6, was evaluated for its tannase-producing capability in a wheat bran-based solid-state fermentation. Thin-layer chromatography (TLC) analysis revealed that the strain was able to degrade tannic acid to gallic acid and pyrogallol during the fermentation process. Quantitation of enzyme activity demonstrated that this strain was capable of producing a relatively high yield of extracellular tannase. Single-factor optimization of process parameters resulted in high yield of tannase after 60 hr of incubation at a pH of 5.0 at 30°C, 1 mL of inoculum size, and 1:1 solid–liquid ratio in the presence of 2.0% (w/v) tannic acid as inducer. The potential of aqueous two-phase extraction (ATPE) for the purification of tannase was investigated. Influence of various parameters such as phase-forming salt, molecular weight of polyethylene glycol (PEG), pH, and stability ratio on tannase partition and purification was studied. In all the systems, the target enzyme was observed to preferentially partition to the PEG-rich top phase, and the best result of purification (2.74-fold) with an enzyme activity recovery of 77.17% was obtained in the system containing 17% (w/w) sodium citrate and 18.18% (w/w) PEG1000, at pH 7.0.  相似文献   

11.
《Process Biochemistry》2014,49(3):506-511
In this study, salting-out extraction (SOE) and crystallization were combined to recover succinic acid from fermentation broths. Of the different SOE systems investigated, the system consisting of organic solvents and acidic salts appeared to be more favorable. A system using acetone and ammonium sulfate was investigated to determine the effect of phase composition and pH. The highest partition coefficient (8.64) and yield of succinic acid (90.05%) were obtained by a system composed of 30% (w/w) acetone and 20% (w/w) ammonium sulfate at a pH of 3.0. Additionally, 99.03% of cells, 90.82% of soluble proteins, and 94.89% of glucose could be simultaneously removed from the fermentation broths. Interestingly, nearly 40% of the pigment was removed using the single-step salting-out extraction process. The analysis of the effect of pH on salting-out extraction indicates that a pH lower than the pK of succinic acid is beneficial for the recovery of succinic acid in an SOE system. Crystallization was performed for the purification of succinic acid at 4 °C and pH 2.0. By combining salting-out extraction with crystallization, an identical total yield (65%) and a higher purity (97%) of succinic acid were obtained using a synthetic fermentation broth compared with the actual fermentation broth (65% and 91%, respectively).  相似文献   

12.
In this study a suitable alcohol/salt aqueous two‐phase (ATP) system was selected for the recovery of 1,3‐propandiol (1,3‐PD) from fermentation broth. From the different alcohol/salt systems studied the ethanol and dipotassium hydrogen phosphate ATP system appeared to be favorable. To examine the potential of this ATP system the partition coefficient of 1,3‐PD in synthetic solutions was first optimized with the response surface methodology. The parameters studied were concentrations of ethanol (21.99–38.81% w/w), dipotassium hydrogen phosphate (14.99–31.81% w/w) and 1,3‐PD (6.36–73.64 g/L). The optimum conditions were found to be 35.39% w/w for ethanol, 28.40% w/w for dipotassium hydrogen phosphate and 73.6 g/L for 1,3‐PD. Under these conditions the maximum partition coefficient of 1,3‐PD and the extraction yield were determined as 23.14 and 97.82%, respectively. The optimum extraction conditions were then used to guide the recovery of 1,3‐PD from a real fermentation broth. The partition coefficient and extraction yield of 1,3‐PD reached 20.28–97.20% in this case, respectively. A favorable partition of the organic acids lactate, acetate and butyrate in the bottom phase was also achieved. We have also studied the removal of cells and macromolecules from the broth. Removal ratio of cells and proteins were 96.47 and 93.05%, respectively. Thus, the ethanol/dipotassium hydrogen phosphate ATP system appears to be an interesting alternative or can be used as one useful step in the downstream processing of 1,3‐PD from fermentation broth.  相似文献   

13.
Enzyme extraction from solid matrix is as important step in solid-state fermentation to obtain soluble enzymes for further immobilization and application in biocatalysis. A method for the recovery of a pool of lipases from Penicillium simplicissimum produced by solid-state fermentation was developed. For lipase recovery different extraction solution was used and phosphate buffer containing Tween 80 and NaCl showed the best results, yielding lipase activity of 85.7 U/g and 65.7 U/g, respectively. The parameters with great impacts on enzyme extraction detected by the Plackett-Burman analysis were studied by Central Composite Rotatable experimental designs where a quadratic model was built showing maximum predicted lipase activity (160 U/g) at 25°C, Tween 80 0.5% (w/v), pH 8.0 and extraction solution 7 mL/g, maintaining constant buffer molarity of 0.1 M and 200 rpm. After the optimization process a 2.5 fold increase in lipase activity in the crude extract was obtained, comparing the intial value (64 U/g) with the experimental design (160 U/g), thus improving the overall productivity of the process.  相似文献   

14.
Commercial production of aroma compounds by de novo microbial biosynthesis has been principally limited by the low productivity so far achieved. Production of 6-pentyl-alpha-pyrone (6PP), a coconut-like aroma compound, by Trichoderma harzianum has been limited by the toxic effect that occurs even at low concentration (<100 ppm). This work evaluated the feasibility of the use of aqueous-two phase systems (ATPS), as in situ extraction systems, in order to overcome the toxic effects of 6PP and to improve culture productivity. The partition behaviour of 6-pentyl-alpha-pyrone and Trichoderma harzianum mycelium in polyethylene glycol (PEG)-salt and PEG-dextran two-phase systems was investigated and it is reported for the first time. The evaluation of system parameters such as PEG molecular mass, concentration of PEG as well as salt, volume ratio (Vr) and dextran molecular mass, was carried out to determine under which conditions the 6PP partitions to the opposite phase that mycelium does. PEG-dextran systems proved to be unsuitable for the in situ recovery of 6PP because either 6PP and biomass partitioned to the same phase or a large extraction phase was required for the process. ATPS extraction comprising Vr = 0.26, PEG 1450 (7.2% w/w) and sulphate (16.6% w/w) provided the best conditions for the maximum accumulation of the biomass into the bottom phase and concentrated the 6PP in the opposite phase (i.e. 86% of biomass and 56% of 6PP of the total amount loaded from the fermentation extract into the ATPS) for ex situ bioseparation. However, this system caused complete inhibition of the growth of the microorganism during the in situ bioseparation, probably as a consequence of the high ionic strength resulting from the salt concentration. Consequently, two ATPS PEG 8000-sulphate (12%/7% and 6%/14%) were evaluated and proved to be more suitable in the potential application for the in situ recovery of 6PP.  相似文献   

15.
《Process Biochemistry》1999,34(2):181-186
Pectinases are enzymes with a wide range of applications in the food and drink industries. In the present work, the extraction of pectinases produced by Aspergillus niger in a solid state fermentation system was investigated. The purpose was to reduce enzyme losses in the fermented solids and at the same time obtain a crude extract as concentrated as possible. Initially the performances of stirred tank and fixed bed extractors were compared. Polygalacturonase activity and viscosity reducing capacity obtained in the stirred tank system were 105% and 15% superior, respectively. Repeated extractions and multiple stage countercurrent extraction were studied, employing stirred tanks. It was possible to observe that three stages were enough for total recovery of the enzymes contained in the solids. The final enzyme extract obtained by counter-current extraction with three stages showed a polygalacturonase activity 81% higher than the one obtained by one-stage extraction.  相似文献   

16.
Production of α-amylase in a laboratory-scale packed-bed bioreactor by Bacillus sp. KR-8104 under solid-state fermentation (SSF) with possibility of temperature control and monitoring was studied using wheat bran (WB) as a solid substrate. The simultaneous effects of aeration rate, initial substrate moisture, and incubation temperature on α-amylase production were evaluated using response surface methodology (RSM) based on a Box-Behnken design. The optimum conditions for attaining the maximum production of α-amylase were 37°C, 72% (w/w) initial substrate moisture, and 0.15 L/min aeration. The average enzyme activity obtained under the optimized conditions was 473.8 U/g dry fermented substrate. In addition, it was observed that the production of enzyme decreased from the bottom of the bioreactor to the top.  相似文献   

17.
Enzyme-assisted extraction of lycopene from tomato processing waste   总被引:1,自引:0,他引:1  
A central composite design was used to optimize the enzyme-assisted extraction of lycopene from the peel fraction of tomato processing waste. Tomato skins were pretreated by a food-grade enzyme preparation with pectinolytic and cellulolytic activities and then subjected to hexane extraction. The factors investigated included extraction temperature (10-50 °C), pretreatment time (0.5-6.5 h), extraction time (0.5-4.5 h), enzyme solution-to-solid ratio (10-50 dm3/kg) and enzyme load (0-0.2 kg/kg). Overall, an 8- to 18-fold increase in lycopene recovery was observed compared to the untreated plant material. From a response surface analysis of the data, a second-degree polynomial equation was developed which provided the following optimal extraction conditions: T=30 °C, extraction time=3.18 h and enzyme load=0.16 kg/kg. The obtained results strongly support the idea of using cell-wall degrading enzymes as an effective means for recovering lycopene from tomato waste.  相似文献   

18.
研究微小毛霉(HL-1)凝乳酶的分离纯化条件及方法。研究酶的最适浸提温度、酶的浸提pH值和最适浸提时间,探讨离子浓度、加水量对浸提效率的影响,利用高速冷冻离心法、有机溶剂沉淀法,膜分离法和层析法等对粗酶液进行了分离。利用光谱法对纯化样品进行检测。酶的最适浸提温度为30℃;最适pH为6.0;浸提10 h活力最高;1%的氯化钠有利于酶的分离,加水比例为15时有利于提取,在10 000 r/min下离心10min澄清效果最好,95%的酒精沉淀效果最好,利用0.2μm的微滤膜可除去发酵液中的菌体,8 000的超滤膜可拦截凝乳酶蛋白,S300的填料可有效分离凝乳酶,纯度达95%以上。  相似文献   

19.
A novel aqueous two-phase system consisted of 2-propanol/ammonium sulfate was used for the extraction of 2,3-butanediol from fermentation broths. The maximum partition coefficient and recovery of 2,3-butanediol reached 9.9 and 93.7%, respectively, and more than 99% of the cells and about 85% of the soluble proteins were removed when 34% (w/w) 2-propanol and 20% (w/w) ammonium sulfate were used. The separated cells could be re-used as inocula for subsequent fermentations. The aqueous two-phase system described in this study may have potential application in the extraction of 2,3-butanediol produced by industrial fermentation processes.  相似文献   

20.
Palm kernel cake (PKC), the residue obtained after extraction of palm oil from oil palm seeds and tamarind seed powder (TSP) obtained after removing the fruit pulp from tamarind fruit pod were tested for the production of tannase under solid-state fermentation (SSF) using Aspergillus niger ATCC 16620. The fungal strain was grown on the substrates without any pretreatment. In PKC medium, a maximum enzyme yield of 13.03 IU/g dry substrate (gds) was obtained when SSF was carried out at 30 degrees C, 53.5% initial substrate moisture, 33 x 10(9) spores/5 g substrate inoculum size and 5% tannic acid as additional carbon source after 96 h of fermentation. In TSP medium, maximum tannase yield of 6.44 IU/gds was obtained at 30 degrees C, 65.75% initial substrate moisture, 11 x 10(9) spores/5 g substrate inoculum, 1% glycerol as additional carbon source and 1% potassium nitrate as additional nitrogen source after 120 h of fermentation. Results from the study are promising for the economic utilization and value addition of these important agro residues, which are abundantly available in many tropical and subtropical countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号