首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO2 wafers at 60 °C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (IC), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion.  相似文献   

2.
Ethanol organosolv pretreatment was performed on Loblolly pine to enhance the efficiency of enzymatic hydrolysis of cellulose to glucose. Solid-state 13C NMR spectroscopy coupled with line shape analysis was used to determine the structure and crystallinity of cellulose isolated from pretreated and enzyme-hydrolyzed Loblolly pine. The results indicate reduced crystallinity of the cellulose following the organosolv pretreatment, which renders the substrate easily hydrolyzable by cellulase. The degree of crystallinity increases and the relative proportion of para-crystalline and amorphous cellulose decreases after enzymatic hydrolysis, indicating preferential hydrolysis of these regions by cellulase. The structural and compositional changes in this material resulting from the organosolv pretreatment and cellulase enzyme hydrolysis of the pretreated wood were studied with solid-state CP/MAS 13C NMR spectroscopy. NMR spectra of the solid material before and after the treatments show that hemicelluloses and lignin are degraded during the organosolv pretreatment.  相似文献   

3.
Strains of Trichoderma, particularly T. reesei and its mutants, are good sources of extracellular cellulase suitable for practical saccharification. They secrete a complete cellulase complex containing endo- and exo-glucanases plus β-glucosidase (cellobiase) which act syngergistically to degrade totally even highly resistant crystalline cellulose to soluble sugars. All strains investigated to date are inducible by cellulose, lactose, or sophorose, and all are repressible by glucose. Induction, synthesis and secretion of the β-glucanase enzymes appear to be closely associated. The composition and properties of the enzyme complex are similar regardless of the strain or inducing substrate although quantities of the enzyme secreted by the mutants are higher. Enzyme yields are proportional to initial cellulose concentration. Up to 15 filter paper cellulase units (20 mg of cellulase protein) per ml and productivities up to 80 cellulase units (130 mg cellulase protein) per litre per hour have been attained on 6% cellulose. The economics of glucose production are not yet competitive due to the low specific activity of cellulase (0.6 filter paper cellulase units/mg protein) and poor efficiency (about 15% of predicted sugar levels in 24 h hydrolyses of 10–25% substrate). As hydrolysis proceeds, the enzyme reaction slows due to increasing resistance of the residue, product inhibition, and enzyme inactivation. These problems are being attacked by use of pretreatments to increase the quantity of amorphous cellulose, addition of β-glucosidase to reduce cellobiose inhibition, and studies of means to overcome instability and increase efficiency of the cellulases. Indications are that carbon compounds derived from enzymatic hydrolysis of cellulose will be used as fermentation and chemical feedstocks as soon as the process economics are favourable for such application.  相似文献   

4.
Product inhibition is a barrier for enzymatic conversion of cellulose into reducing sugar in single aqueous phase. In addition, the difficulty in the recovery of cellulase also leads to high cost for the enzymatic hydrolysis of cellulose. In this study, enzymatic degradation of cellulose was carried out in pH–pH recyclable aqueous two-phase systems (ATPS) composed by copolymers poly (AA-co-DMAEMA-co-BMA) (abbreviated PADB3.8) and poly (MAA-co-DMAEMA-co-BMA) (abbreviated PMDB). In the systems, cellulase was immobilized on pH-response copolymer PMDB by using 1-Ethyl-3-(3-dimethyllaminopropyl)-carbodiimide hydrochloride (EDC) as cross-linker. Optimized partition coefficient of product in the systems was 2.45, in the presence of 40 mM (NH4)2SO4. Insoluble substrate and immobilized enzyme were biased to bottom phase, while the product was partitioned to top phase. Microcrystalline cellulose was hydrolyzed into reducing sugar, and the product entered into top phase. The yield of saccharification in ATPS could reach 70.57% at the initial substrate concentration of 0.5% (w/v), and the value was 9.3% higher than that in the single aqueous phase. Saccharification yield could reach 66.15% after immobilized cellulase was recycled five times in ATPS.  相似文献   

5.
The kinetics of the hydrolysis of microcrystalline cellulose (MC) by a Trichoderma reesei cellulase complex and by the individual endoglucanase (pI 4.4–5.2) and cellobiohydrolase (pI 4.0–4.2) has been studied. A flow chart for the enzymatic hydrolysis of the cellulose has been revealed, which formed a basis for a computer simulation of the kinetic regularities observed. As a result of it, the values of the catalytic rate constants for the individual stages of the enzymatic degradation of MC have been calculated. Then, the synergistic behaviour of endoglucanase and cellobiohydrolase in the hydrolysis of MC has been described both quantitatively and graphically. The relative efficiency of the individual stages for the MC hydrolysis in terms of glucose and cellobiose formation for cellulase complexes of various composition has been calculated. It was quantitatively shown that cellobiohydrolase plays the key role in the MC hydrolysis by T. reesei cellulase preparations, because it gives up to 80% glucose and up to 80–90% cellobiose in the presnce of endoglucanase which in turn plays a relatively minor role in a direct formation of both soluble products of the hydrolysis.  相似文献   

6.
This study aimed to correlate the efficiency of enzymatic hydrolysis of the cellulose contained in a sugarcane bagasse sample pretreated with dilute H2SO4 with the levels of independent variables such as initial content of solids and loadings of enzymes and surfactant (Tween 20), for two cellulolytic commercial preparations. The preparations, designated cellulase I and cellulase II, were characterized regarding the activities of total cellulases, endoglucanase, cellobiohydrolase, cellobiase, β-glucosidase, xylanase, and phenoloxidases (laccase, manganese and lignin peroxidases), as well as protein contents. Both extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases. For the enzymatic hydrolyses, two 23 central composite full factorial designs were employed to evaluate the effects caused by the initial content of solids (1.19–4.81%, w/w) and loadings of enzymes (1.9–38.1 FPU/g bagasse) and Tween 20 (0.0–0.1 g/g bagasse) on the cellulose digestibility. Within 24 h of enzymatic hydrolysis, all three independent variables influenced the conversion of cellulose by cellulase I. Using cellulase II, only enzyme and surfactant loadings showed significant effects on cellulose conversion. An additional experiment demonstrated the possibility of increasing the initial content of solids to values much higher than 4.81% (w/w) without compromising the efficiency of cellulose conversion, consequently improving the glucose concentration in the hydrolysate.  相似文献   

7.
The biochemical conversion of cellulosic biomass to ethanol, a promising alternative fuel, can be carried out efficiently and economically using the simultaneous saccharification and fermentation (SSF) process. The SSF integrates the enzymatic hydrolysis of cellulose to glucose, catalyzed by the synergistic action of cellulase and beta-glucosidase, with the fermentative synthesis of ethanol. Because the enzymatic step determines the ethanol. Because the enzymatic step determines the availability of glucose to the ethanologenic fermentation, the kinetic of cellulose hydrolysis by cellulase and beta-glucosidase and the susceptibility of the two enzymes to inhibition by hydrolysis and fermentation products are of significant importance to the SSF performance and were investigated under realistic SSF conditions. A previously developed SSF mathematical model was used to conceptualize the depolymerization of cellulose. The model was regressed to the collected data to determine the values of the enzyme parameters and was found to satisfactorily predict the kinetics of cellulose hydrolysis. Cellobiose and glucose were identified as the strongest inhibitors of cellulase and beta-glucosidase, respectively. Experimental and modeling results are presented in light of the impact of enzymatic hydrolysis on fuel ethanol production. (c) 1993 Wiley & Sons, Inc.  相似文献   

8.
A semimechanistic multi‐reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose‐to‐glucose and two heterogeneous reactions of cellulose‐to‐cellobiose and cellulose‐to‐glucose. Adsorption of cellulase onto pretreated CWR during enzymatic hydrolysis was modeled via a Langmuir adsorption isotherm. This is the first kinetic model which incorporated the negative role of lignin (nonproductive adsorption) using a Langmuir‐type isotherm adsorption of cellulase onto lignin. The model also reflected the competitive inhibitions of cellulase by glucose and cellobiose. The Matlab optimization function of “lsqnonlin” was used to fit the model and estimate kinetic parameters based on experimental data generated under typical conditions (8% solid loading and 15 FPU/g‐cellulose enzyme concentration without the addition of background sugars). The model showed high fidelity for predicting cellulose hydrolysis behavior over a broad range of solid loading (4–12%, w/w, dry basis), enzyme concentration (15–150 FPU/ g‐cellulose), sugar inhibition (glucose of 30 and 60 mg/mL and cellobiose of 10 mg/mL). In addition, sensitivity analysis showed that the incorporation of the nonproductive adsorption of cellulase onto lignin significantly improved the predictability of the kinetic model. Our model can serve as a robust tool for developing kinetic models for system optimization of enzymatic hydrolysis, hydrolysis reactor design, and/or other hydrolysis systems with different type of enzymes and substrates. Biotechnol. Bioeng. 2009;102: 1558–1569. © 2008 Wiley Periodicals, Inc.  相似文献   

9.
Starting from cellulose samples prepared from cotton lintes and differing in lattice type, crystallinity and fibrillar morphology, enzymatic hydrolysis of fibre cellulose has been studied employing complete enzyme systems from Trichoderma, Sporotrichum, Gliocladium and Penicillium as well as isolated endo- and exo-1,4-β-glucanases from Trichoderma reesei and Sporotorichum pulverulentum. The effect of hydrolysis was characterized by content of reducing sugars (RS) and of glucose in the hydrolyzate as well as by DP and X-ray diffraction pattern of the residues. With all the complete enzyme systems investigated about the same order of degradability was found with a series of substrates differing in physical structure. The hydrolysis effect of cellulase from S. pulverulentum proved to be sensitive to the gas atmosphere above the system (N2 or O2), probably due to the interaction of an O2-atmosphere with the activity of the cellubiose-oxydase existent in the system. Isolated endoglucanase from S. pulverulentum and T.reesei still led to a considerable formation of RS and glucose, a corrosion of the fibre surface and a significant descrease in DP. Influence of substrate physical structure was rather small with regard to RS, but still considerable with regard to residue-DP. The effect of isolated exoglucanases depends largely on the chemical structure of the cellobiohydrolase in question, as demonstrated with the two samples “CBH I” and “CBH II” from T. reesei. With CBH I, rather resembling endo-glucanase behaviour, a considerable formation of RS and a significant corrosion of the fibre surface has been observed. On the other hand, only negligibly small amounts of RS were formed by CBH II. Results are discussed with regard to the complex mechanism of cellulase action on fibrous cellulose and with regard to the relevance of different parameters of physical structure of cellulose in connection with enzymatic hydrolysis. A remarkable acceleration of the Cellulose III → Cellulose I lattice transition due to chain fragmentations in the presence of cellulase can be concluded the experiments.  相似文献   

10.
In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between optimal temperatures and inhibitory glucose concentrations on the one hand (SHF) vs. sub-optimal temperatures and ethanol-inhibited cellulolysis on the other (SSF). Although the impact of ethanol on cellobiose hydrolysis was found to be negligible, formation of glucose and cellobiose from cellulose were found to be significantly inhibited by ethanol. A previous model for the kinetics of enzymatic cellulose hydrolysis was, therefore, extended with enzyme inhibition by ethanol, thus allowing a rational evaluation of SSF and SHF. The model predicted SSF processing to be superior. The superiority of SSF over SHF (separate hydrolysis and fermentation) was confirmed experimentally, both with respect to ethanol yield on glucose (0.41 g g?1 for SSF vs. 0.35 g g?1 for SHF) and ethanol production rate, being 30% higher for an SSF type process. High conversion rates were found to be difficult to achieve since at a conversion rate of 52% in a SSF process the reaction rate dropped to 5% of its initial value. The model, extended with the impact of ethanol on the cellulase complex proved to predict reaction progress accurately.  相似文献   

11.
The kinetics of enzymatic hydrolysis of different lignocellulosic materials (wheat straw, newspaper and microcrystalline cellulose Avicel PH 101) was studied using the cellulase complexes from Trichoderma reesei QM 9414 and its mutants M 5, M 6, MHC 15 and MHC 22. The maximum yields of hydrolysis were obtained with wheat straw partially delignified with 1% NaOH as substrate, and using the enzyme from the mutants T. reesei M 6 and MHC 22. The possibility of simultaneous enzymatic hydrolysis and ethanol fermentation of wheat straw using the enzyme complex from M 6 and yeasts of the genus Candida and Torulopsis was also investigated. A good conversion of liberated glucose and cellobiose to ethanol was obtained, however, xylose was not fermented.  相似文献   

12.
Liquid hot (LHW) water pretreatment (LHW) of lignocellulosic material enhances enzymatic conversion of cellulose to glucose by solubilizing hemicellulose fraction of the biomass, while leaving the cellulose more reactive and accessible to cellulase enzymes. Within the range of pretreatment conditions tested in this study, the optimized LHW pretreatment conditions for a 15% (wt/vol) slurry of hybrid poplar were found to be 200oC, 10 min, which resulted in the highest fermentable sugar yield with minimal formation of sugar decomposition products during the pretreatment. The LHW pretreatment solubilized 62% of hemicellulose as soluble oligomers. Hot‐washing of the pretreated poplar slurry increased the efficiency of hydrolysis by doubling the yield of glucose for a given enzyme dose. The 15% (wt/vol) slurry of hybrid poplar, pretreated at the optimal conditions and hot‐washed, resulted in 54% glucose yield by 15 FPU cellulase per gram glucan after 120 h. The hydrolysate contained 56 g/L glucose and 12 g/L xylose. The effect of cellulase loading on the enzymatic digestibility of the pretreated poplar is also reported. Total monomeric sugar yield (glucose and xylose) reached 67% after 72 h of hydrolysis when 40 FPU cellulase per gram glucan were used. An overall mass balance of the poplar‐to‐ethanol process was established based on the experimentally determined composition and hydrolysis efficiencies of the liquid hot water pretreated poplar. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
Cellulase production by a thermophilic clostridium species   总被引:8,自引:5,他引:3       下载免费PDF全文
Strain M7, a thermophilic, anaerobic, terminally sporing bacterium (0.6 by 4.0 μm) was isolated from manure. It degraded filter paper in 1 to 2 days at 60 C in a minimal cellulose medium but was stimulated by yeast extract. It fermented a wide variety of sugars but produced cellulase only in cellulose or carboxymethyl-cellulose media. Cellulase synthesis not only was probably repressed by 0.4% glucose and 0.3% cellobiose, but also cellulase activity appeared to be inhibited by these sugars at these concentrations. Both C1 cellulase (degrades native cellulose) and Cx cellulase (β-1,4-glucanase) activities in strain M7 cultures were assayed by measuring the liberation of reducing sugars with dinitrosalicylic acid. Both activities had optima at pH 6.5 and 67 C. One milliliter of a 48-h culture of strain M7 hydrolyzed 0.044-meq of glucose per min from cotton fibers. The cellulase(s) from strain M7 was extracellular, produced during exponential growth, but was not free in the growth medium until approximately 30% of the cellulose was hydrolyzed. Glucose and cellobiose were the major soluble products liberated from cellulose by the cellulase. ZnCl2 precipitation appeared initially to be a good method for the concentration of cellulase activity, but subsequent purification was not successful. Isoelectric focusing indicated the presence of four Cx cellulases (pI 4.5, 6.3, 6.8, and 8.7). The rapid production and high activity of cellulases from this organism strongly support the basic premise that increased hydrolysis of native cellulose is possible at elevated temperature.  相似文献   

14.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

15.
The production of cellulase was investigated in repeated batch experiments using immobilized cells of two Trichoderma reesei mutants in a rotating disc fermenter under very low shear stress. The enzyme production with one of the mutants was maintained for three successive batch cycles (ca. 30 days), while with the other mutant the cellulase formation lasted only one batch cycle (14 days) because of a genetic instability. The enzymatic hydrolysis of microcrystalline cellulose by the cellulase complex formed in the rotating disc fermenter is distinctly higher than that of cellulase produced in a stirred tank reactor, in which the higher shear stress partially damages the enzyme molecules, mainly those of cellobiohydrolase. The higher specific activity of the cellulase produced in the disc fermenter correlates with its higher capacity of adsorption onto microcrystalline cellulose.  相似文献   

16.
The extracellular cellulase enzyme system of Clostridium A11 was fractionated by affinity chromatography on Avicel: 80% of the initial carboxymethylcellulase (CMCase) activity was adhered. This cellulase system was a multicomponent aggregate. Several CMCase activities were detected, but the major protein P1 had no detectable activity. Adhered and unadhered cellulases showed CMCase activity with the highest specific activity in Avicel-adhered fraction. However, only afhered fractions could degrade Avicel. Thus, efficiency of the enzymatic hydrolysis of Avicel was related to the cellulase-adhesion capacity. Carboxymethylcellulase and Avicelase activities were studied with the extracellular enzyme system and cloned cellulases. Genomic libraries from Clostridium A11 were constructed with DNA from this Clostridium, and a new gene cel1 was isolated. The gene(s) product(s) from cel1 exhibited CMCase and p-nitrophenylcellobiosidase (pNPCbase) activities. This cloned cellulase adhered to cellulose. Synergism between adhered enzyme system and cloned endoglucanases was observed on Avicel degradation. Conversely, no synergism was observed on CMC hydrolysis. Addition of cloned endoglucanase to cellulase complex led to increase of the Vmax without significant K m variation. Cloned endoglucanases can be added to cellulase complexes to efficiently hydrolyze cellulose.  相似文献   

17.
The effect of particle size on enzymatic hydrolysis of cellulose has been investigated. The average size of microcrystalline cotton cellulose has been reduced to submicron scale by using a media mill. The milled products were further subjected to hydrolysis using cellulase. High cellulose concentration (7%) appeared to retard the size reduction and resulted in greater particles and smaller specific surface areas than those at low concentration (3%) with the same milling time. Initial rate method was employed to explore the rate of enzymatic hydrolysis of cellulose. The production rate of cellobiose was increased at least 5-folds due to the size reduction. The yield of glucose was also significantly increased depending upon the ratio of enzyme to substrate. A high glucose yield (60%) was obtained in 10-h hydrolysis when the average particle size was in submicron scale.  相似文献   

18.
19.
Cellobiose is an intermediate in the enzymatic hydrolysis of cellulose to glucose and acts as an inhibitor for the cellulase enzymes. The conversion of cellobiose to glucose was studied with β-glucosidase adsorbed on Amberlite DP-1, a cation-exchange resin. The best overall pH for adsorption and reactor operation was near 5.0. The Km values increased with increasing enzyme loading due to competitive inhibition. The maximum practical enzyme loading was about 28 units/g resin. The immobilized enzyme was operated continously in both packed bed and fluidized bed reactors, giving half-lives between 200 and 375 h.  相似文献   

20.
A multistep approach was taken to investigate the intrinsic kinetics of the cellulase enzyme complex as observed with hydrolysis of noncrystalline cellulose (NCC). In the first stage, published initial rate mechanistic models were built and critically evaluated for their performance in predicting time-course kinetics, using the data obtained from enzymatic hydrolysis experiments performed on two substrates: NCC and alpha-cellulose. In the second stage, assessment of the effect of reaction intermediates and products on intrinsic kinetics of enzymatic hydrolysis was performed using NCC hydrolysis experiments, isolating external factors such as mass transfer effects, physical properties of substrate, etc. In the final stage, a comprehensive intrinsic kinetics mechanism was proposed. From batch experiments using NCC, the time-course data on cellulose, cello-oligosaccharides (COS), cellobiose, and glucose were taken and used to estimate the parameters in the kinetic model. The model predictions of NCC, COS, cellobiose, and glucose profiles show a good agreement with experimental data generated from hydrolysis of different initial compositions of substrate (NCC supplemented with COS, cellobiose, and glucose). Finally, sensitivity analysis was performed on each model parameter; this analysis provides some insights into the yield of glucose in the enzymatic hydrolysis. The proposed intrinsic kinetic model parametrized for dilute cellulose systems forms a basis for modeling the complex enzymatic kinetics of cellulose hydrolysis in the presence of limiting factors offered by substrate and enzyme characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号