首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Bioresource technology》2000,71(2):103-112
Granular activated carbons (GACs) were produced from sugarcane bagasse combined with one of two binders (corn syrup, coal tar) by physical activation and from pecan shells by physical and chemical activation. GACs were evaluated for their physical (hardness, bulk density), chemical (ash, pH), surface (surface area, pore size distribution, surface chemistry), and adsorption properties (molasses color removal, sugar decolorization) and compared with two commercial reference carbons. Results showed that larger surface area, a well-developed macro- and mesoporosity, and a minimal surface charge were desirable in GACs designed for sugar decolorization. Steam activation of pecan shells carbon was the only by-product-activation combination that produced GAC with all the above three desirable characteristics of a good sugar decolorizer. Chemical activation of pecan shells yielded GACs with high surface area and adequate pore size distribution but with large surface charge. In contrast, sugarcane bagasse-based GACs exhibited low surface areas and unsatisfactory physical/chemical properties.  相似文献   

2.
The objectives of this study were to evaluate selected physical and chemical properties of agricultural byproduct-based activated carbons made from pecan shells and sugarcane bagasse, and compare those properties to a commercial coal-based activated carbon as well as to compare the adsorption efficiency of these carbons for geosmin. Comparison of the physical and chemical properties of pecan shell- and bagasse-based carbons to the commercial carbon, Calgon Filtrasorb 400, showed that pecan shell carbon, but not the bagasse carbon, compared favorably to Filtrasorb 400, especially in terms of surface area, bulk density, ash and attrition. A carbon dosage study done in a model system showed the amount of geosmin adsorbed to be greater for Filtrasorb 400 and the bagasse-based carbon at low carbon concentrations than for the pecan shell carbons, but geosmin adsorption was similar in all carbons at higher carbon dosages. Application of the Freundlich isotherm model to the adsorption data showed that carbons made by steam activation of pecan shells or sugarcane bagasse had geosmin adsorption characteristics most like those of the commercial carbon. In terms of physical, chemical and adsorptive properties, steam-activated pecan shell carbon most resembled the commercial carbon and has the potential to replace Filtrasorb 400 in applications involving removal of geosmin from aqueous environments.  相似文献   

3.
The effect of lignocellulose degradation in wheat straw, rice straw, and sugarcane bagasse on the accumulation and antioxidant activity of extra- (EPS) and intracellular polysaccharides (IPS) of Inonotus obliquus under submerged fermentation were first evaluated. The wheat straw, rice straw, and sugarcane bagasse increased the EPS accumulation by 91.4, 78.6, and 74.3 % compared with control, respectively. The EPS and IPS extracts from the three lignocellulose media had significantly higher hydroxyl radical- and 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity than those from the control medium. Of the three materials, wheat straw was the most effective lignocellulose in enhancing the mycelia growth, accumulation and antioxidant activity of I. obliquus polysaccharides (PS). The carbohydrate and protein content, as well as the monosaccharide compositions of the EPS and IPS extracts, were correlated with sugar compositions and dynamic contents during fermentation of individual lignocellulosic materials. The enhanced accumulation of bioactive PS of cultured I. obliquus supplemented with rice straw, wheat straw, and bagasse was evident.  相似文献   

4.
A field experiment was conducted to investigate the influences of 0, 5, 10, 15 Mg ha–1 of wheat (Triticum aestivum) straw, composted sugarcane bagasse residue and farmyard manure on soil physical properties and yield of winter wheat. The experimental design was a split plot with four replicates. The considered physical properties, 1 year after organic matter addition, included aggregate stability, infiltration rate, water retention curve and dry bulk density. Wheat yield and chemical characteristics of wheat grains were measured. Application of organic materials significantly increased wheat yield and increased aggregate stability, infiltration rate, water retained at less than –100 kPa, and decreased soil bulk density. The effectiveness of different organic materials, farmyard manure, composted bagasse and wheat straw, on improving the soil physical properties was similar. Wheat grain and stubble yield progressively increased as the rate of the organic materials increased. The effectiveness of composted bagasse, farmyard manure and wheat straw on improving wheat grain yield was 22, 14 and 3%, and wheat stubble yield was 26, 17 and 4% over the control.  相似文献   

5.
The production of activated carbon from bagasse and rice husk by a single-stage chemical activation method in short retention times (30-60min) was examined in this study. The raw materials were subjected to a chemical pretreatment and were fed to the reactor in the form of a paste (75% moisture). Chemicals examined were ZnCl2, NaOH and H3PO4, for temperatures of 600, 700 and 800 degrees C. Of the three chemical reagents under evaluation only ZnCl2 produced activated carbons with high surface areas. BET surface areas for rice husk were up to 750m2/g for 1:1 ZnCl2:rice husk ratio. BET surface areas for bagasse were up to 674m2/g for 0.75:1 ZnCl2:bagasse ratio. Results were compared to regular two-stage physical activation methods.  相似文献   

6.
Pyrolysis (carbonization) has been proposed as one of several optional technologies for disposing and recycling waste products in Japan. Plant wastes (sugarcane bagasse and rice husks), animal waste (cow biosolids) and human waste (treated municipal sludge) were pyrolyzed at temperatures from 250–800 °C in closed containers. The carbonized materials were evaluated for specific physical properties (yield, surface area, density) and specific chemical properties (total carbon, total nitrogen, pH, fixed carbon, ash content, volatility) in order to compare differences in properties among the four waste products. The results indicated that (1) surface area, total carbon, ash content and pH increased as the carbonization temperature increased, while carbonization yield decreased with increasing temperature, (2) product density however was not affected by temperature and (3) correlation coefficients were determined among the physical and chemical properties and several significant correlations were observed. The data indicate that source material had considerable influence on the physical and chemical properties of the carbonized products.  相似文献   

7.
The effect of radiation pasteurization of sugar cane bagasse and rice straw and fermentation using various strains of fungi were studied for upgrading of cellulosic wastes. The initial contamination by fungi and aerobic bacteria both in bagasse and straw was high. The doses of 30 kGy for sterilization and 8 kGy for elimination of fungi were required. Irradiation effect showed that rice straw contained comparatively radioresistant microorganisms. It was observed that all the fungi (Hericium erinacium, Pleurotus djamor, Ganoderma lucidum, Auricularia auricula, Lentinus sajor-caju, Coriolus versicolor, Polyporus arcularius, Coprinus cinereus) grow extending over the entire substrates during one month after inoculation in irradiated bagasse and rice straw with 3% rice bran and 65% moisture content incubated at 30°C. Initially, sugar cane bagasse and rice straw substrates contained 39.4% and 25.9% of cellulose, 22.9% and 26.9% of hemicellulose, and 19.6% and 13.9% of lignin + cutin, respectively. Neutral detergent fibre (NDF) values decreased significantly in sugar cane bagasse fermented byG. lucidum, A. auricula andP. arcularius, and in rice straw fermented by all the 8 strains of fungi. Acid detergent fibre (ADF) values also decreased in bagasse and rice straw fermented by all the fungi.P. arcularius, H. erinacium, G. lucidum andC. cinereus were found to be the most effective strains for delignification of sugar cane bagasse.  相似文献   

8.
The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.  相似文献   

9.
Melanocarpus albomyces IIS-68, a thermophilic fungus was used for the production of extracellular xylanase on various agroresidues in solid-state fermentation (SSF). Growth on untreated wheat straw and sugar cane bagasse supported xylanase production, while rice straw and rice husk did not. Alkali treatment and acid chlorite treatment of these latter substrates, which lead to extensive delignification, enhanced xylanase production. In contrast, these treatments caused a decline in xylanase activity on wheat straw and bagasse. Acetyl esterase was produced concurrently with xylanase, maximal activity being produced on bagasse. Enzyme production was higher in SSF than in submerged fermentation (SmF). Studies with electron micrographs indicated that culture filtrate proteins were able to degrade wall polymers.  相似文献   

10.
Agricultural wastes have attractive potential as alternate energy sources. However, a major bottleneck is to identify eco-friendly treatment methodologies to utilize them. The large diversity of unexplored, novel, and potential microorganisms hold great promise and require periodic isolation and characterization of microorganisms for bioprospection. In this study, approximately 100 fungal isolates were tested for their lignocellulolytic enzyme activities, based on plate assay, followed by quantification of enzyme activity. From this, M2E (Inonotus tropicalis) and 2a (Cerrena unicolor) showed good growth and proficient ligninolytic activity; isolates GK1 (Chaetomium globosum) and GK2 (Chaetomium brasiliense) exhibited exceptional cellulolytic activity on lignocellulosic substrates such as rice straw and sugarcane bagasse. Consortia of the potential ligninolytic and cellulolytic isolates were set up to determine their ability to biodegrade the lignocellulosic substrates such as rice straw and sugarcane bagasse. The efficiency of the consortia was determined on the basis of the increase in enzyme activity; it was also evident through scanning electron microscopy, x-ray diffraction analysis of the degraded substrates, and the sugar yield. Experiments were also carried out to compare the biological with the physical pretreatment methods. The consortium of ligninolytic and cellulolytic marine-derived fungi developed in this study prove to have the potential for application in the effective utilization of agricultural wastes.  相似文献   

11.
Aims: To evaluate sugar recoveries and fermentabilities of eight lignocellulosic raw materials following mild acid pretreatment and enzyme hydrolysis using a recombinant strain of Zymomonas mobilis. Methods and Results: Dilute acid pretreatment (2% H2SO4) with 10% (w/v) substrate loading was performed at 134°C for 60 min followed by enzyme hydrolysis at 60°C. The results demonstrated that hydrolysis of herbaceous raw materials resulted in higher sugar recoveries (up to 60–75%) than the woody sources (<50%). Fermentation studies with recombinant Z. mobilis ZM4 (pZB5) demonstrated that final ethanol concentrations and yields were also higher for the herbaceous hydrolysates. Significant reduction in growth rates and specific rates of sugar uptake and ethanol production occurred for all hydrolysates, with the greatest reductions evident for woody hydrolysates. Further studies on optimization of enzyme hydrolysis established that higher sugar recoveries were achieved at 50°C compared to 60°C following acid pretreatment. Conclusions: Of the various raw materials evaluated, the highest ethanol yields and productivities were achieved with wheat straw and sugarcane bagasse hydrolysates. Sorghum straw, sugarcane tops and Arundo donax hydrolysates were similar in their characteristics, while fermentation of woody hydrolysates (oil mallee, pine and eucalyptus) resulted in relatively low ethanol concentrations and productivities. The concentrations of a range of inhibitory compounds likely to have influence the fermentation kinetics were determined in the various hydrolysates. Significance and Impact of the Study: The study focuses on lignocellulosic materials available for second generation ethanol fermentations designed to use renewable agricultural/forestry biomass rather than food‐based resources. From the results, it is evident that relatively good sugar and ethanol yields can be achieved from some herbaceous raw materials (e.g. sugarcane bagasse and sorghum straw), while much lower yields were obtained from woody biomass.  相似文献   

12.
Enzymic saccharification of gamma ray and alkali pretreated sawdust, rice straw, and sugar cane bagasse showed higher release of reducing sugar from pretreated substrates. By gamma ray treatment alone (500 kGy) reducing sugar release of 2.8, 9.2, and 10 g/l was obtained from 7.5% (w/v) sawdust, rice straw, and bagasse and the same substrates showed reducing sugar release of 4.2, 30, and 20 g/l respectively when treated with alkali (0.1 g/g). Combination of gamma ray with alkali treatment further increased the reducing sugar release to 10.2, 33, and 36 g/l from sawdust, rice straw, and bagasse respectively. The effects of gamma ray and alkali treatment on saccharification varied with the nature of the substrate.  相似文献   

13.
Effect of high-pressure steam (5, 7 and 9 kg cm?2 for 30 and 60 min) on chemical composition and digestibility in vitro of sugarcane bagasse, paddy straw and sorghum straw was studied. The treatment brought about significant falls in the neutral detergent fibre (NDF), specifically the hemicellulose content, and in pH. Soluble carbohydrates and volatile acids (VA) increased with treatment, while acid detergent fibre (ADF) remained constant. The increments in true dry-matter digestibility in vitro (IVTDMD) compared to untreated were 23–64% (sugarcane bagasse), 19–36% (paddy straw) and 31–42% (sorghum straw) with increasing steam pressures and period. The digestibility of cell-wall constituents (CWC) improved with steam treatment in all three roughages. The dry-matter losses resulting from the treatment were 0.9–20%, 17–39% and 1–22% for sugarcane bagasse, paddy straw and sorghum straw, respectively.  相似文献   

14.
Abstract

In Brazil, sugarcane biomass is generated in large amounts. Sugarcane bagasse and straw are considered as an important feedstock for renewable energy and biorefinery. This paper aims to study the generation of monosaccharides (C5 and C6) from sugarcane biomass via processing bagasse or straw and mixtures of both materials (bagasse:straw 3:1, 1:1 and 1:3). Samples were pretreated with sulfuric acid which resulted in approximately 90% of hemicellulose solubilization, corresponding to around 58 g L? 1 of xylose. Pretreated straw showed greater susceptibility to enzymatic hydrolysis in comparison to bagasse, as shown by glucose yields of 76% and 65%, respectively, whereas the mixtures showed intermediate yields. Thus, one strategy to balance sugarcane biomass availability and possibly increasing 2G ethanol production would be to use bagasse–straw mixtures in appropriate ratios according to market fluctuations. Untreated and pretreated samples were analyzed using X-ray diffraction, but there was no relationship to enzymatic hydrolysis.  相似文献   

15.
The aim of this work was to prepare the bio-crudes from agricultural wastes (i.e., rice straw, rice husk, sugarcane bagasse and coconut shell) by using induction-heating pyrolysis at specified conditions. The quantitative analysis of 21 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in bio-crudes examined using gas chromatography/mass spectrometry (GC/MS) revealed that the PAHs in bio-crudes were primarily dominant in the low molecular weight (LMW) PAHs, including naphthalene (1.10-2.45 mg/L) and acenaphthene (0.72-7.61 mg/L). However, by considering carcinogenic potency, the bio-crudes from rice husk and sugarcane bagasse contained higher contents of benzo[a]pyrene (BaP) (0.52 and 0.92 mg/L, respectively) as compared to those from rice straw and coconut shell.  相似文献   

16.
Effects of both pre-treatment and number of steps in KOH activation of raw rice straw (RS) on textural and adsorption properties of RS-derived activated carbons (ACs) were investigated. Three pre-treatment protocols were tested: mechanical, chemical by NaOH pulping, and a combination of both. Activation of RS-based materials was investigated, at a constant temperature of 800 °C, according to two ways: a 1-step simultaneous carbonisation–activation with KOH, and a 2-steps process: carbonisation followed by activation by KOH.  相似文献   

17.
The use of natural fibers as reinforcement for thermoplastics has generated much interest due to their low cost, possibility of environmental protection and use of locally available renewable resources. In this work the mechanical and morphological properties of high density polyethylene/pre-treated and modified residues from sugarcane bagasse cellulose composites were analyzed. Composites were produced by a thermokinetic mixer. The microstructural analyses of fracture surface from composites can be easily evaluated by microscopic techniques. Results showed that the modification of sugarcane bagasse cellulose with zirconium oxychloride was successfully accomplished and that this reinforcement material with high density polyethylene showed tensile strength higher than non-modified sugarcane bagasse cellulose. Modification in the sugarcane bagasse cellulose influenced directly in mechanical properties of the composite material. This can be observed by the fracture surface, which showed that modified cellulose sugarcane bagasse improved interfacial adhesion between fiber and matrix.  相似文献   

18.
A locally isolated strain of Micromonospora sp. when grown on different natural cellulosic substrates gave the highest activity of carboxymethylcellulase (34 U/ml) and Avicelase (0.9 U/ml) on rice straw. Sugar cane bagasse was also a good substrate for growth and cellulase production. With commercial cellulosic substrates, highest carboxymethylcellulase (90 U/ml) and Avicelase (2.8 U/ml) activities were when the organism grew on xylan. Saccharification of sugar cane bagasse and rice straw by enzyme preparations of the organism grown on the respective substrates released 5.6 and 5.8 mg reducing sugar/ml. With all enzyme preparations, bagasse was more easily saccharified than rice straw.The authors are with the Atomic Energy Research Establishment, GPO Box 3787, Dhaka 1000, Bangladesh; N.A. Chowdhury, M. Moniruzzaman, and N. Choudhury in the Institute of Food and Radiation Biology, and N. Nahar in the Institute of Nuclear Science and Technology.  相似文献   

19.
The effects of chemical, physical, and enzymatic treatments of rice straw and sugarcane bagasse on the microbial digestibility of cellulose have been investigated. Treatment with 4% NaOH for 15 min at 100 C increased the digestibility of cellulose from 29.4 to 73%. Treatment with 5.2% NH3 could increase digestibility to 57.0% Treatments with sulfuric acid and crude cellulase preparation solubilized cellulose but did not increase the digestibility. Grinding or high-pressure cooking of the substrate had little effect on increasing the digestibility of cellulosic substrates by the Cellulomonas species.  相似文献   

20.
The feasibility of replacing peat or perlite with rice hulls and ground kenaf core to grow a Mediterranean species (Pinus halepensis M.), was investigated. Treatments involved the following growing media: 70 peat:30 perlite as a control, 70 peat:30 rice hulls, 50 peat:50 rice hulls, kenaf (100%) and 60 kenaf:20 peat:20 rice hulls. The seedlings' quality and the physical and chemical properties of the substrates were evaluated. After this, the seedlings were planted in the field and their field performance was recorded. The results showed that the growth medium 70 peat:30 rice hulls can successfully be used for the production of P. halepensis, since the seedlings' nursery and field performance were similar to, or even better than those obtained with the control medium. The seedlings produced in the growth media containing kenaf did not attain a suitable planting size and showed poorer field performance than control seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号