首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration of the swimming rhythm, scratch-swim hybrid cycles, or complete cessation of the rhythm. The type of effect obtained depended on the level of swim-evoking stimulation. These effects suggest that swim-evoking and scratch-evoking inputs can interact strongly in the spinal cord to modify the rhythm and pattern of motor output. Collectively, the single-neuron recordings and the results of simultaneous stimulation suggest that important elements of the generation of rhythms and patterns are shared between locomotion and scratching in limbed vertebrates.  相似文献   

2.
In principle, nervous systems could generate a behavior either via neurons that are relatively specialized for producing one behavior or via multifunctional neurons that are shared among multiple, diverse behaviors. I recorded extracellularly from individual turtle spinal cord neurons while evoking hindlimb scratching, swimming, and withdrawal motor patterns. The majority of spinal neurons recorded were activated during both scratching and swimming motor patterns, consistent with the existence of shared circuitry for these types of limb movements. These neurons tended to have a similar degree of rhythmic modulation of their firing rate and a similar phase preference within the hip flexor activity cycle during scratching and swimming motor patterns. In addition, a substantial minority of neurons were activated during scratching motor patterns but silenced during swimming motor patterns. This raises the possibility that inhibitory interactions between some scratching and swimming neural circuitry play a role in motor pattern selection. These scratch-specialized neurons were also less likely than the putative shared neurons to be activated during withdrawal motor patterns. Thus, these neurons may represent two separate classes, one of which is used generally for hindlimb motor control and the other of which is relatively specialized for a subset of hindlimb movement types.  相似文献   

3.
Application of the glutamate agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA, 5-10 microM), or N-methyl-D-aspartate (NMDA, 50-100 microM) to the turtle spinal cord produced fictive hindlimb motor patterns in low-spinal immobilized animals (in vivo) and in isolated spinal cord-hindlimb nerve preparations (in vitro). For in vivo experiments, drugs were applied onto the dorsal surface of 2-4 adjacent spinal cord segments in and near the anterior hindlimb enlargement. Motor output was recorded unilaterally or bilaterally from hindlimb muscle nerves. AMPA elicited vigorous motor patterns in vivo that included strict hip flexor-extensor and right-left alternation. In most turtles, the monoarticular knee extensor nerve FT-KE was active during the HE phase of AMPA evoked burst cycles, similar to the timing of pocket scratch motor patterns. NMDA was less effective in vivo, typically producing only weak and irregular bursting from hip nerves and little or no knee extensor (KE) discharge. Sensory stimulation of a rostral scratch reflex in vivo could reset an ongoing AMPA-evoked motor rhythm, indicating that cutaneous reflex pathways interact centrally with the chemically activated rhythm generator. Most in vitro preparations consisted of six segments of spinal cord, including the entire 5-segment hindlimb enlargement (D8-S2) and the segment immediately anterior to the enlargement (D7), with attached hindlimb nerves. In contrast to in vivo experiments, in vitro preparations exhibited highly regular, long-lasting motor rhythms when NMDA was superfused over the spinal cord. AMPA also produced rhythmic motor patterns in vitro, but these lasted only a few minutes before they were replaced with tonic discharge. FT-KE timing during in vitro chemically elicited activity was similar to that of sensory-evoked pocket scratch motor patterns. Some NMDA-evoked rhythmicity persisted even in 3-segment (D6-D8) and 1-segment (D8) in vitro preparations, demonstrating that neural mechanisms for chemically activated rhythmogenesis reside even in a single segment of the hindlimb enlargement.  相似文献   

4.
Central pattern generators and the control of rhythmic movements.   总被引:18,自引:0,他引:18  
E Marder  D Bucher 《Current biology : CB》2001,11(23):R986-R996
Central pattern generators are neuronal circuits that when activated can produce rhythmic motor patterns such as walking, breathing, flying, and swimming in the absence of sensory or descending inputs that carry specific timing information. General principles of the organization of these circuits and their control by higher brain centers have come from the study of smaller circuits found in invertebrates. Recent work on vertebrates highlights the importance of neuro-modulatory control pathways in enabling spinal cord and brain stem circuits to generate meaningful motor patterns. Because rhythmic motor patterns are easily quantified and studied, central pattern generators will provide important testing grounds for understanding the effects of numerous genetic mutations on behavior. Moreover, further understanding of the modulation of spinal cord circuitry used in rhythmic behaviors should facilitate the development of new treatments to enhance recovery after spinal cord damage.  相似文献   

5.
Electromyography (EMG) was used to examine muscle activity of the major hip, knee, and ankle extensors during both hopping and swimming in leopard frogs. Chronic EMG electrodes were implanted for periods of 7–10 days. This permitted us to record EMG activities during both hopping and swimming from the same electrode, allowing a direct comparison of the timing and amplitudes of muscle activity between the two behaviors. We could then relate these activities to the kinematics of locomotion. In both behaviors, all three extensors were synchronously activated 30–50 ms before limb extension began. However, the hip extensor turned on relatively earlier in hopping than in swimming when on time was expressed as percent of stride. The hip and knee extensors were activated relatively longer in hopping and the ankle extensor relatively longer in swimming. The amplitudes of the rectified, integrated EMG signals were roughly twice as large in hopping as in swimming for all three muscles, supporting the notion that propulsion in hopping requires more force than in swimming. The EMG burst durations differed little between the muscles or, in relative duration, between the behaviors. As has been found in other quadrupeds, the EMG bursts began before visible movement and ceased at or before hindlimb extension was completed. In our animals, however, we found a consistent, low level (10–30% of maximum amplitude) of EMG activity that continued 60–200 ms past the end of the burst and into the suspension periods in both hopping and swimming. We hypothesize that this unusual activity may be present in frogs so that the hind limb remains aero(hydro)dynamically stable as the frog arches through its leap or glides in swimming following completed limb extension. Thus, the timing and pattern of the EMG bursts are consistent with those present in other tetrapods and support conservatism of neural control. However, the prolonged low-level activity suggests flexibility in the control pattern and variation according to specific behaviors. © 1996 Wiley-Liss, Inc.  相似文献   

6.
The spinal cord can generate motor patterns underlying several kinds of limb movements. Many spinal interneurons are multifunctional, contributing to multiple limb movements, but others are specialized. It is unclear whether anatomical distributions of activated neurons differ for different limb movements. We examined distributions of activated neurons for locomotion and scratching using an activity-dependent dye. Adult turtles were stimulated to generate repeatedly forward swimming, rostral scratching, pocket scratching, or caudal scratching motor patterns, while sulforhodamine 101 was applied to the spinal cord. Sulforhodamine-labeled neurons were widely distributed rostrocaudally, dorsoventrally, and mediolaterally after each motor pattern, concentrated bilaterally in the deep dorsal horn, the lateral intermediate zone, and the dorsal to middle ventral horn. Labeled neurons were common in all hindlimb enlargement segments and the pre-enlargement segment following swimming and scratching, but a significantly higher percentage were in the rostral segments following swimming than rostral scratching. These findings suggest that largely the same spinal regions are activated during swimming and scratching, but there are some differences that may indicate locations of behaviorally specialized neurons. Finally, the substantial inter-animal variability following a single kind of motor pattern may indicate that essentially the same motor output is generated by anatomically variable networks.  相似文献   

7.
Electrical activity in nerves to various hind-limb muscles was investigated in decerebrate and decapitated cats during fictitious scratching. By analogy with the phases of real scratchingaiming (flexion of the hip and ankle and extension of the knee) and scratching (the opposite movements in these same joints), the corresponding phases of motor discharges were distinguished. Depending on the type of these discharges the hind-limb muscles were divided into three groups. In the nerves to the muscles of group I activity was observed in the period of "initial aiming" and in the rhythmic "aiming phases" and was reciprocal to activity in the nerves to group II muscles starting the "scratching phases." Activity appeared in nerves to group III muscles both in the period of "initial aiming" and in the rhythmic "aiming phases" and "scratching phases." Passive forward deflection of the limb potentiated the "scratching phases" and weakened the period of "initial aiming" and the "aiming phases." The physiological significance of the organization of the central program and the design of the spinal scratching generator are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 48–56, January–February, 1981.  相似文献   

8.
The sequential stepping of left and right limbs is a fundamental motor behavior that underlies walking movements. This relatively simple locomotor behavior is generated by the rhythmic activity of motor neurons under the control of spinal neural networks known as central pattern generators (CPGs) that comprise multiple interneuron cell types. Little, however, is known about the identity and contribution of defined interneuronal populations to mammalian locomotor behaviors. We show a discrete subset of commissural spinal interneurons, whose fate is controlled by the activity of the homeobox gene Dbx1, has a critical role in controlling the left-right alternation of motor neurons innervating hindlimb muscles. Dbx1 mutant mice lacking these ventral interneurons exhibit an increased incidence of cobursting between left and right flexor/extensor motor neurons during drug-induced locomotion. Together, these findings identify Dbx1-dependent interneurons as key components of the spinal locomotor circuits that control stepping movements in mammals.  相似文献   

9.
There is extensive modulation of cutaneous and H-reflexes during rhythmic leg movement in humans. Mechanisms controlling reflex modulation (e.g., phase- and task-dependent modulation, and reflex reversal) during leg movements have been ascribed to the activity of spinal central pattern generating (CPG) networks and peripheral feedback. Our working hypothesis has been that neural mechanisms (i.e., CPGs) controlling rhythmic movement are conserved between the human lumbar and cervical spinal cord. Thus reflex modulation during rhythmic arm movement should be similar to that for rhythmic leg movement. This hypothesis has been tested by studying the regulation of reflexes in arm muscles during rhythmic arm cycling and treadmill walking. This paper reviews recent studies that have revealed that reflexes in arm muscles show modulation within the movement cycle (e.g., phase-dependency and reflex reversal) and between static and rhythmic motor tasks (e.g., task-dependency). It is concluded that reflexes are modulated similarly during rhythmic movement of the upper and lower limbs, suggesting similar motor control mechanisms. One notable exception to this pattern is a failure of contralateral arm movement to modulate reflex amplitude, which contrasts directly with observations from the leg. Overall, the data support the hypothesis that CPG activity contributes to the neural control of rhythmic arm movement.  相似文献   

10.
The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.  相似文献   

11.
The purpose of this study was to investigate the correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while 10 subjects performed a clean at 85% of 1 repetition maximum (1RM). Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body mass-normalized 1RM. Two hip kinematic and 2 knee kinetic patterns were significantly correlated with relative 1RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion during the movement transition between the first and second pulls. The first kinetic pattern captured a peak in the knee extension moment during the second pull. The second kinetic pattern captured a spatiotemporal shift in the timing and amplitude of the peak knee extension moment. The kinematic results suggest that greater lift mass was associated with steady trunk position during the first pull and less hip extension motion during the second-knee bend transition. Further, the kinetic results suggest that greater lift mass was associated with a smaller knee extensor moments during the first pull, but greater knee extension moments during the second pull, and an earlier temporal transition between knee flexion-extension moments at the beginning of the second pull. Collectively, these results highlight the importance of controlled trunk and hip motions during the first pull and rapid employment of the knee extensor muscles during the second pull in relation to weightlifting performance.  相似文献   

12.
Neural networks in the spinal cord control two basic features of locomotor movements: rhythm generation and pattern generation. Rhythm generation is generally considered to be dependent on glutamatergic excitatory neurons. Pattern generation involves neural circuits controlling left-right alternation, which has been described in great detail, and flexor-extensor alternation, which remains poorly understood. Here, we use a mouse model in which glutamatergic neurotransmission has been ablated in the locomotor region of the spinal cord. The isolated in?vitro spinal cord from these mice produces locomotor-like activity-when stimulated with neuroactive substances-with prominent flexor-extensor alternation. Under these conditions, unlike in control mice, networks of inhibitory interneurons generate the rhythmic activity. In the absence of glutamatergic synaptic transmission, the flexor-extensor alternation appears to be generated by Ia inhibitory interneurons, which mediate reciprocal inhibition from muscle proprioceptors to antagonist motor neurons. Our study defines a minimal inhibitory network that is needed to produce flexor-extensor alternation during locomotion.  相似文献   

13.
The interaction between the semitendinosus muscle and both hip and knee joint angles was examined in the frog (Rana pipiens) hindlimb. Sarcomere length was measured by laser diffraction in passive muscle during hip and knee rotation. A model was then developed to predict semitendinosus sarcomere length as a function of both hip and knee flexion angle. Based on published frog muscle fiber length-tension [Gordon, A. M. et al., J. Physiol. 184, 170-192 (1966)] and force-velocity [Edman, K. A. P., J. Physiol. 291, 143-159 (1979)] properties, and published joint angles during hopping [Calow, L. J. and Alexander, R. McN., J. Zool. (Lond.) 171, 293-321 (1973)], muscle sarcomere length, force and hip and knee torque during a hop were predicted. The semitendinosus muscle generally operated on the descending limb of the length-tension curve at normal joint angle combinations. The model predicted that, during a single coordinated movement, a period of sarcomere shortening (concentric) was followed by a period of sarcomere lengthening (eccentric). Based on calculated torque profiles at the hip and knee joints, this study suggested that the semitendinosus muscle probably functions more as a hip extensor than a knee flexor. In addition, based on the nature of the shortening-lengthening cycle, the semitendinosus may act to mechanically link the force of knee extension to hip extension.  相似文献   

14.
The central nervous system of paralysed Xenopus laevis embryos can generate a motor output pattern suitable for swimming locomotion. By recording motor root activity in paralysed embryos with transected nervous systems we have shown that: (a) the spinal cord is capable of swimming pattern generation; (b) swimming pattern generator capability in the hindbrain and spinal cord is distributed; (c) caudal hindbrain is necessary for sustained swimming output after discrete stimulation. By recording similarly from embryos whose central nervous system was divided longitudinally into left and right sides, we have shown that: (a) each side can generate rhythmic motor output with cycle periods like those in swimming; (b) during this activity cycle period increases within an episode, and there is the usual rostrocaudal delay found in swimming; (c) this activity is influenced by sensory stimuli in the same way as swimming activity; (d) normal phase coupling of the left and right sides can be established by the ventral commissure in the spinal cord. We conclude that interactions between the antagonistic (left and right) motor systems are not necessary for swimming rhythm generation and present a model for swimming pattern generation where autonomous rhythm generators on each side of the nervous system drive the motoneurons. Alternation is achieved by reciprocal inhibition, and activity is initiated and maintained by tonic excitation from the hindbrain.  相似文献   

15.
The coordination and timing of muscle activities during rhythmic movements, like walking and swimming, are generated by intrinsic spinal motor circuits. Such locomotor networks are operational early in development and are found in all vertebrates. This review outlines and compares recent advances that have revealed the developmental and functional organization of these fundamental spinal motor networks in limbed and non-limbed animals. The comparison will highlight common principles and divergence in the organization of the spinal locomotor network structure in these different species as well as point to unresolved issues regarding the assembly and functioning of these networks.  相似文献   

16.
We have examined the cellular and synaptic mechanisms underlying the genesis of alternating motor activity in the developing spinal cord of the chick embryo. Experiments were performed on the isolated lumbosacral cord maintained in vitro. Intracellular and whole cell patch clamp recordings obtained from sartorius (primarily a hip flexor) and femorotibialis (a knee extensor) motoneurons showed that both classes of cell are depolarized simultaneously during each cycle of motor activity. Sartorius motoneurons generally fire two bursts/cycle, whereas femorotibialis motoneurons discharge throughout their depolarization, with peak activity between the sartorius bursts. Voltage clamp recordings revealed that inhibitory and excitatory synaptic currents are responsible for the depolarization of sartorius motoneurons, whereas femorotibialis motoneurons are activated principally by excitatory currents. Early in development, the dominant synaptic currents in rhythmically active sartorius motoneurons appear to be inhibitory so that firing is restricted to a single, brief burst at the beginning of each cycle. In E7-E13 embryos, lumbosacral motor activity could be evoked following stimulation in the brainstem, even when the brachial and cervical cord was bathed in a reduced calcium solution to block chemical synaptic transmission. These findings suggest that functional descending connections from the brainstem to the lumbar cord are present by E7, although activation of ascending axons or electrical synapses cannot be eliminated. Ablation, optical, and immunocytochemical experiments were performed to characterize the interneuronal network responsible for the synaptic activation of motoneurons. Ablation experiments were used to show that the essential interneuronal elements required for the rhythmic alternation are in the ventral part of the cord. This observation was supported by real-time Fura-2 imaging of the neuronal calcium transients accompanying motor activity, which revealed that a high proportion of rhythmically active cells are located in the ventrolateral part of the cord and that activity could begin in this region. The fluorescence transients in the majority of neurons, including motoneurons, occurred in phase with ventral root or muscle nerve activity, implying synchronized neuronal action in the rhythm generating network. Immunocytochemical experiments were performed in E14-E16 embryos to localize putative inhibitory interneurons that might be involved in the genesis or patterning of motor activity. The results revealed a pattern similar to that seen in other vertebrates with the dorsal horn containing neurons with gamma-aminobutyric acid (GABA)-like immunoreactivity and the ventral and intermediate regions containing neurons with glycine-like immunoreactivity.  相似文献   

17.
Neural mechanisms underlying selection of motor responses are largely unknown in vertebrates. This study shows that in immobilized Xenopus embryos, brief mechanical or electrical stimulation of the trunk skin can trigger sustained fictive swimming, whereas sustained pressure or repetitive electrical stimulation can evoke fictive struggling. These two rhythmic motor patterns are distinct: alternating single motor root spikes propagate from head to tail during swimming; alternating motor root bursts propagate from tail to head during struggling. As both motor patterns can be evoked in embryos with the CNS transected caudal to the cranial roots, the sensory pathway responsible must have direct access to the spinal cord. Rohon-Beard sensory neurons provide the only such pathway known. They respond appropriately to brief stimuli applied to the trunk skin, and also to repetitive electrical stimuli and sustained pressure. The results suggest that Rohon-Beard sensory neurons can both trigger sustained swimming and 'gate in' struggling motor patterns, and thus effect behavioural selection according to their pattern of activity.  相似文献   

18.
Antri M  Mellen N  Cazalets JR 《PloS one》2011,6(6):e20529
Although the mammalian locomotor CPG has been localized to the lumbar spinal cord, the functional-anatomical organization of flexor and extensor interneurons has not been characterized. Here, we tested the hypothesis that flexor and extensor interneuronal networks for walking are physically segregated in the lumbar spinal cord. For this purpose, we performed optical recordings and lesion experiments from a horizontally sectioned lumbar spinal cord isolated from neonate rats. This ventral hemi spinal cord preparation produces well-organized fictive locomotion when superfused with 5-HT/NMDA. The dorsal surface of the preparation was visualized using the Ca(2+) indicator fluo-4 AM, while simultaneously monitoring motor output at ventral roots L2 and L5. Using calcium imaging, we provided a general mapping view of the interneurons that maintained a stable phase relationship with motor output. We showed that the dorsal surface of L1 segment contains a higher density of locomotor rhythmic cells than the other segments. Moreover, L1 segment lesioning induced the most important changes in the locomotor activity in comparison with lesions at the T13 or L2 segments. However, no lesions led to selective disruption of either flexor or extensor output. In addition, this study found no evidence of functional parcellation of locomotor interneurons into flexor and extensor pools at the dorsal-ventral midline of the lumbar spinal cord of the rat.  相似文献   

19.
Cyclic patterns of motor neuron activity are involved in the production of many rhythmic movements, such as walking, swimming, and scratching. These movements are controlled by neural circuits referred to as central pattern generators (CPGs). Some of these circuits function in the absence of both internal pacemakers and external feedback. We describe an associative neural network model whose dynamic behavior is similar to that of CPGs. The theory predicts the strength of all possible connections between pairs of neurons on the basis of the outputs of the CPG. It also allows the mean operating levels of the neurons to be deduced from the measured synaptic strengths between the pairs of neurons. We apply our theory to the CPG controlling escape swimming in the mollusk Tritonia diomedea. The basic rhythmic behavior is shown to be consistent with a simplified model that approximates neurons as threshold units and slow synaptic responses as elementary time delays. The model we describe may have relevance to other fixed action behaviors, as well as to the learning, recall, and recognition of temporally ordered information.  相似文献   

20.
Central pattern generators (CPGs) are neural circuits that based on their connectivity can generate rhythmic and patterned output in the absence of rhythmic external inputs. This property makes CPGs crucial elements in the generation of many kinds of rhythmic motor behaviors in insects, such as flying, walking, swimming, or crawling. Arguably representing the most diverse group of animals, insects utilize at least one of these types of locomotion during one stage of their ontogenesis. Insects have been extensively used to study the neural basis of rhythmic motor behaviors, and particularly the structure and operation of CPGs involved in locomotion. Here, we review insect locomotion with regard to flying, walking, and crawling, and we discuss the contribution of central pattern generation to these three forms of locomotion. In each case, we compare and contrast the topology and structure of the CPGs, and we point out how these factors are involved in the generation of the respective motor pattern. We focus on the importance of sensory information for establishing a functional motor output and we indicate behavior‐specific adaptations. Furthermore, we report on the mechanisms underlying coordination between different body parts. Last but not least, by reviewing the state‐of‐the‐art knowledge concerning the role of CPGs in insect locomotion, we endeavor to create a common ground, upon which future research in the field of motor control in insects can build.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号