首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of bathroom thermal conditions on physiological and subjective responses were evaluated before, during, and after whole-body bath (W-bath), half-body bath (H-bath) and showering. The air temperature of the dressing room and bathroom was controlled at 10 degrees C, 17.5 degrees C, and 25 degrees C. Eight healthy males bathed for 10 min under nine conditions on separate days. The water temperature of the bathtub and shower was controlled at 40 degrees C and 41 degrees C, respectively. Rectal temperature (Tre), mean skin temperature (Tsk), blood pressure (BP), heart rate (HR), body weight loss and blood characteristics (hematocrit: Hct, hemoglobin: Hb) were evaluated. Also, thermal sensation (TS), thermal comfort (TC) and thermal acceptability (TA) were recorded. BP decreased rapidly during W-bath and H-bath compared to showering. HR during W-bath was significantly higher than for H-bath and showering (p < 0.01). The double products due to W-bath during bathing were also greater than for H-bath and showering (p < 0.05). There were no distinct differences in Hct and Hb among the nine conditions. However, significant differences in body weight loss were observed among the bathing methods: W-bath > H-bath > showering (p < 0.001). W-bath showed the largest increase in Tre and Tsk, followed by H-bath, and showering. Significant differences in Tre after bathing among the room temperatures were found only at H-bath. The changes in Tre after bathing for H-bath at 25 degrees C were similar to those for W-bath at 17.5 degrees C and 10 degrees C. TS and TC after bathing significantly differed for the three bathing methods at 17.5 degrees C and 10 degrees C (TS: p < 0.01 TC: p < 0.001). Especially, for showering, the largest number of subjects felt "cold" and "uncomfortable". Even though all of the subjects could accept the 10 degrees C condition after W-bath, such conditions were intolerable to half of them after showering. These results suggested that the physiological strains during H-bath and showering were smaller than during W-bath. However, colder room temperatures made it more difficult to retain body warmth after H-bath and created thermal discomfort after showering. It is particularly important for H-bath and showering to maintain an acceptable temperature in the dressing room and bathroom, in order to bathe comfortably and ensure warmth.  相似文献   

2.
The thermal resistance of Listeria monocytogenes associated with a milk-borne outbreak of listeriosis was determined in parallel experiments by using freely suspended bacteria and bacteria internalized by phagocytes. The latter inoculum was generated by an in vitro phagocytosis reaction with immune-antigen-elicited murine peritoneal phagocytes. The heat suspension medium was raw whole bovine milk. Both suspensions were heated at temperatures ranging from 52.2 to 71.7 degrees C for various periods of time. Mean D values for each temperature and condition of heated suspension revealed no significant differences. The extrapolated D71.7 degrees C (161 degrees F) value for bacteria internalized by phagocytes was 1.9 s. Combined tube and slug-flow heat exchanger results yielded an estimated D71.7 degrees C value of 1.6 s for freely suspended bacteria. The intracellular position did not protect L. monocytogenes from thermal inactivation.  相似文献   

3.
Thermal homeostasis is important for the well-being of laboratory rodents during experimental investigations involving chemical restraint. Anaesthesia-induced hypothermia may alter physiological processes, prolong recovery times, or result in death. Therefore, active warming may be needed to prevent excess heat loss from the rodent to the environment. Three methods of active warming were evaluated in typical rodent procedural areas and recovery cages: a forced-air warming system, infra-red heat emitter and circulating-water blanket. The first experiment involved recording the temperature of the immediate environment of the three devices, with and/or without the accompanying plastic drape, to simulate a surgical situation. In the second experiment, temperatures were recorded within cages that simulated a recovery situation with the same modalities. Forced-air warmer blankets (FAWB) were either wrapped around or placed underneath standard polycarbonate rodent cages and the results were compared with cage temperatures warmed by the heat emitter and circulating-water blanket. Temperatures were recorded at 0, 20, 40, and 60 min for each warming treatment, to determine mean temperature (+/- SEM) and the magnitude of increase (+/- SEM) between 0 and 60 min. All three devices showed an increase in temperature, but the FAWB with a plastic drape heated the procedural area microenvironment (Experiment 1) quickly and to a final temperature of 38.6 degrees C (101.5 degrees F) at 60 min, compared with 25 degrees C (77 degrees F) for the heat emitter and 28 degrees C (82.4 degrees F) for the circulating-water blanket. The magnitude of increase was significantly different for each treatment, but the FAWB with a plastic drape climbed 16.3 degrees C (29.3 degrees F) in 60 min. In Experiment 2, the FAWB wrapped around a cage, covered with a plastic drape, heated recovery cages to 32.5 degrees C (90.5 degrees F) compared to the heat emitter 26.4 degrees C (79.5 degrees F) and circulating-water blanket with drape 26.3 degrees C (79.3 degrees F). The magnitude of increase in the microenvironmental temperature was significantly higher for the FAWB, with the plastic drape wrapped around the recovery cage, compared to the other treatments. In both experiments, forced-air warming proved superior to the more traditional thermal support treatments in heating the microenvironments quickly and to an optimum ambient temperature. Forced-air warming devices should be considered when thermal support is required for rodent procedural areas and recovery cages.  相似文献   

4.
Blood flow of the finger and the forearm were measured in five male subjects by venous occlusion plethysmography using mercury-in-Silastic strain gauges in either a cool-dry (COOL: 25 degrees C, 40% relative humidity), a hot-dry (WARM: 35 degrees C, 40% relative humidity), or a hot-wet (HOT: 35 degrees C, 80% relative humidity) environment. One hand or forearm was immersed in a water bath, the temperature (Tw) of which was raised every 10 min by steps of 2 degrees C until it reached 41 degrees or 43 degrees C. While the other hand or forearm was kept immersed in a water bath (Tw, 35 degrees C), blood flow in the heated side (BFw) was compared with the corresponding blood flow in the control side (BFc). Under WARM or HOT conditions, finger BFw was significantly lower than finger BFc at a Tw of 39-41 degrees C in the majority of subjects. When Tw was raised to 43 degrees C, however, finger BFw became higher than BFc in nearly half of the subjects. In the COOL state, finger BFw did not decrease but increased steadily when Tw increased from 37 degrees to 43 degrees C. In the forearm, BFw increased steadily with increasing Tw even in WARM-HOT environments. No such heat-induced vasoconstriction was observed in the forearm. From these results we conclude that in hyperthermic subjects, the rise in local temperature to above core temperature produces vasoconstriction in the fingers, an area where no thermal sweating takes place.  相似文献   

5.
The aim of the present study was to determine whether heat shock protein 72 (HSP72) is induced in a heated rat model at rectal temperatures below 42 degrees C. Rats were divided into a control group and six groups (n = 6) heated to different rectal temperatures: 39 degrees C for 1 h (39), 40.0 degrees C for either 15 min (40S) or 1 h (40L), 41.0 degrees C for either 15 min (41S) or 1 h (41L) and 42.0 degrees C for 15 min (42). Tissues were sampled 4 h after heating. Following 1 h at 40.0 degrees C, HSP72 was significantly elevated in heart (p < 0.005), but not in gut or liver tissue. In all three tissues, HSP72 was significantly elevated under the conditions 41L and 42 compared to control tissue (p < 0.005). Marked differences were found in the amount of HSP72 induced in different tissues in response to the same heat stress. Duration of heating was important in modulating HSP72 induction, with a significantly greater induction of HSP72 following 1 h compared to 15 min at 41 degrees C in all three tissues (p < 0.02). A correlation was found between thermal load and HSP72 content in liver, heart (both p < 0.01) and gut (p < 0.001) for the rats heated to 41 and 42 degrees C. These data show that HSP72 is induced at temperatures below 42 degrees C, with striking differences between tissues.  相似文献   

6.
Daily variations in sensitivity to noradrenaline (NA) and the activation of nonshivering thermogenesis (NST) are important for survival under a potentially wide range of environmental conditions. However, little is known regarding the ability of the Siberian hamster and other species to activate NST in the day and night when they may be subjected to marked variations in environmental temperature. In this study, the effects of acclimation temperature and time of day on the behavioral thermoregulatory response to NA injections in Siberian hamsters (Phodopus sungorus) was investigated. Hamsters were acclimated for 4 weeks to 23 degrees C and a L:D 12:12 h photoperiod. After acclimation, preferred ambient temperatures (PT(a)) in saline- and NA-injected animals were measured continuously in the temperature gradient system. NA (0.6 mg/kg; s.c.) was given every 4 h while PT(a) was monitored. After NA injections there was a rapid drop in PT(a), decreasing to approximately 15 degrees C within 10-20 min after each NA injection. Following 4 weeks of acclimation to 10 degrees C and a L:D 8:16 h photoperiod, the same hamsters were re-tested in the temperature gradient system. Cold acclimation led to an accentuation in the behavioral response with a decrease in PT(a) of approximately 10 degrees C. The maximal decrease in preferred ambient temperatures was recorded during the light phase of the day and during the second part of the night. Lowering of PT(a) after NA allows for rapid dissipation of the heat from NST. Overall, the behavioral response reflects the daily changes in brown adipose tissue sensitivity to NA and thus capacity for NST.  相似文献   

7.
The effect of prior heat shock on the thermal resistance of Listeria monocytogenes in meat was investigated. A sausage mix inoculated with approximately 10(7) L. monocytogenes per g was initially subjected to a heat shock temperature of 48 degrees C before being heated at a final test temperature of 62 or 64 degrees C. Although cells heat shocked at 48 degrees C for 30 or 60 min did not show a significant increase in thermotolerance as compared with control cells (non-heat shocked), bacteria heat shocked for 120 min did, showing an average 2.4-fold increase in the D64 degrees C value. Heat-shocked cells shifted to 4 degrees C appeared to maintain their thermotolerance for at least 24 h after heat shock.  相似文献   

8.
Destruction of Staphylococcus aureus during frankfurter processing.   总被引:1,自引:1,他引:0       下载免费PDF全文
We studied the thermal resistance of Staphylococcus aureus during frankfurter processing in respect to whether staphylococci are killed by the heating step of the process and whether heat injury interferes with the quantitative estimation of the survivors. With S. aureus 198E, heat injury could be demonstrated only when large numbers of cells (10(8)/g) were present and at a product temperature of 140 degrees F (60 degrees C). On tryptic soy agar and tryptic soy agar plus 7% NaCl media, at temperatures less than 140 degrees F, the counts were virtually identical; above 140 degrees F, the counts converged, with the organisms dying so rapidly that heat injury was not demonstrable. Heat injury was thus judged not to interfere with the quantitative estimation of staphylococci surviving the normal commercial heating given frankfurters. By using a combination of direct plating on tryptic soy agar and a most-probable-number technique, we detected no viable cells (less than 0.3/g) of several strains of S. aureus in frankfurters heated to 160 degrees F (71.1 degrees C). This temperature is compatible with the normal final temperature to which federally inspected processors heat their frankfurters and with the temperature needed to destroy salmonellae.  相似文献   

9.
The effect of prior heat shock on the thermal resistance of Listeria monocytogenes in meat was investigated. A sausage mix inoculated with approximately 10(7) L. monocytogenes per g was initially subjected to a heat shock temperature of 48 degrees C before being heated at a final test temperature of 62 or 64 degrees C. Although cells heat shocked at 48 degrees C for 30 or 60 min did not show a significant increase in thermotolerance as compared with control cells (non-heat shocked), bacteria heat shocked for 120 min did, showing an average 2.4-fold increase in the D64 degrees C value. Heat-shocked cells shifted to 4 degrees C appeared to maintain their thermotolerance for at least 24 h after heat shock.  相似文献   

10.
In this study we investigated the effect of heat on the proteins of the particulate fraction (PF) of HeLa S3 cells using electron spin resonance (ESR) and thermal gel analysis (TGA). ESR detects overall conformational changes in proteins, while TGA detects denaturation (aggregation due to formation of disulfide bonds) in specific proteins. For ESR measurements the -SH groups of the proteins were labelled with a maleimido bound spin label (4-maleimido-tempo). The sample was heated inside the ESR spectrometer at a rate of 1 degree C/min. ESR spectra were made every 2-3 degrees C between 20 degrees C and 70 degrees C. In the PF of untreated cells conformational changes in proteins were observed in three temperature stretches: between 38 and 44 degrees C (transition A, TA); between 47 and 53 degrees C (transition B, TB); and above 58 degrees C (transition C, TC). With TGA, using the same heating rate, we identified three proteins (55, 70, and 90 kD) which denatured during TB. No protein denaturation was observed during TA, while during TC denaturation of all remaining proteins in the PF occurred. When the ESR and TGA measurements were done with the PF of (heat-induced) thermotolerant cells, TA was unchanged while TB and TC started at higher temperatures. The temperature shift for the onset of these transitions correlated with the degree of thermotolerance that was induced in the cells. These results suggest that protection against heat-induced denaturation of proteins in the PF is involved in heat induced thermotolerance.  相似文献   

11.
Storage of cultures of Salmonella enteritidis PT4 at either 4 degrees or 8 degrees C before heating significantly increased heat sensitivity. The differences between fresh and stored cultures, which became apparent after 4-7 h, were more pronounced with cultures stored at the lower temperature and in those heated at 60 degrees rather than 55 degrees C. Incubation of the stored cultures in either egg or Lemco broth for 30 min at 37 degrees C prior to heating enabled the organisms to recover heat resistance.  相似文献   

12.
The effects of local heating on finger blood flow (BF) and local thermal sensation (Sensw) were studied. Finger BFs in both hands were measured simultaneously; one hand was immersed in water the temperature (Tw) of which was raised from 35 degrees C to 43 degrees C by steps of 2 degrees C every 10 min, while the other hand was kept at Tw 35 degrees C. Finger BF in the locally heated hand decreased at Tw 37 to 41 degrees C, while finger BF in the control hand did not alter. Sensw in the heated hand showed a dynamic response, initially increasing concomitantly with an increase in Tw, then gradually returning and adapting to a new level of Sensw. The dynamic response of Sensw was not perceived during mental calculation even when Tw was raised to 40 degrees C, and the reduction in finger blood flow was not observed. These results suggest that finger vasoconstriction caused by local heating closely relates to the dynamic response characteristic of local thermal sensation at Tw above core temperature, and that the perception of local thermal sensation in the central nervous system is involved in the mechanism of this vasoconstrictor response.  相似文献   

13.
X Li  S L Brown  R P Hill 《Radiation research》1992,130(2):211-219
When SCCVII or KHT tumors (150 mm3) growing in the dorsum of the hind feet of mice were heated in a water bath at 44 degrees C for 60 min, the local control rate was 75 or 5%, respectively. To investigate factors responsible for the differential thermosensitivity between SCCVII and KHT tumors, the intratumor temperature distributions during heating and the thermosensitivities of the tumor cells were studied. Significant temperature heterogeneity was observed in heated tumors. The thermal dose distribution during heating for the sensitive SCCVII tumors was found to be more homogeneous than that for the resistant KHT tumors. For cells grown and heated in culture, SCCVII and KHT cells had similar thermosensitivities. However, when heated in vivo, both SCCVII and KHT cells were more sensitive than their counterparts grown in culture and SCCVII cells were more sensitive than KHT cells. If cells dispersed from the tumors were cultured in medium for 6 h and then heated, both types of cells became as resistant as cells grown in culture. One possible reason for tumor cells to be more sensitive to heating in vivo than in vitro, the temperature of unheated tumors, was examined. It was found that the temperature in the same region in unheated tumors varied temporally by several degrees with an average temperature of 31-32 degrees C. We found no evidence that the temperature during tumor growth could greatly influence the thermosensitivity of the tumor cells. Our findings indicate that a more homogeneous distribution of temperature in the tumor during heating and higher in vivo thermosensitivity of the tumor cells are characteristics of the more heat-sensitive tumor.  相似文献   

14.
The soluble ATPase (adenosine triphosphatase) from Micrococcus lysodeikticus underwent a major unfolding transition when solutions of the enzyme at pH 7.5 were heated. The midpoint occurred at 46 degrees C when monitored by changes in enzymic activity and intrinsic fluorescence, and at 49 degrees C when monitored by circular dichroism. The products of thermal denaturation retained much secondary structure, and no evidence of subunit dissociation was detected after cooling at 20 degrees C. The thermal transition was irreversible, and thiol groups were not involved in the irreversibility. The presence of ATP, adenylyl imidodiphosphate, CaCl2 or higher concentrations of ATPase conferred stability against thermal denaturation, but did not prevent the irreversibility one denaturation had taken place. In the presence of guanidinium chloride, thermal denaturation occurred at lower temperatures. The midpoints of the transition were 45 degrees C in 0.25 M-, 38 degrees C in 0.5 M-and 30 degrees C in 0.75 M-denaturant. In the highest concentration of guanidinium chloride a similar unfolding transition induced by cooling was observed. Its midpoint was 9 degrees C, and the temperature of maximum stability of the protein was 20 degrees C. The discontinuities occurring the the Arrhenius plots of the activity of this enzyme had no counterpart in variations in the far-u.v. circular dichroism or intrinsic fluorescence of the protein at the same temperature.  相似文献   

15.
The aim of this study was to elucidate the interactive effect of central hypovolemia and plasma hyperosmolality on regulation of peripheral vascular response and AVP secretion during heat stress. Seven male subjects were infused with either isotonic (0.9%; NOSM) or hypertonic (3.0%; HOSM) NaCl solution and then heated by perfusing 42 degrees C (heat stress; HT) or 34.5 degrees C water (normothermia; NT) through water perfusion suits. Sixty minutes later, subjects were exposed to progressive lower body negative pressure (LBNP) to -40 mmHg. Plasma osmolality (P(osmol)) increased by approximately 11 mosmol/kgH(2)O in HOSM conditions. The increase in esophageal temperature before LBNP was much larger in HT-HOSM (0.90 +/- 0.09 degrees C) than in HT-NOSM (0.30 +/- 0.07 degrees C) (P < 0.01) because of osmotic inhibition of thermoregulation. During LBNP, mean arterial pressure was well maintained, and changes in thoracic impedance and stroke volume were similar in all conditions. Forearm vascular conductance (FVC) before application of LBNP was higher in HT than in NT conditions (P < 0.001) and was not influenced by P(osmol) within the thermal conditions. The reduction in FVC at -40 mmHg in HT-HOSM (-9.99 +/- 0.96 units; 58.8 +/- 4.1%) was significantly larger than in HT-NOSM (-6.02 +/- 1.23 units; 44.7 +/- 8.1%) (P < 0.05), whereas the FVC response was not different between NT-NOSM and NT-HOSM. Plasma AVP response to LBNP did not interact with P(osmol) in either NT or HT conditions. These data indicate that there apparently exists an interactive effect of P(osmol) and central hypovolemia on the peripheral vascular response during heat stress, or peripheral vasodilated conditions, but not in normothermia.  相似文献   

16.
The purpose of this study was to investigate the effects of a floor heating and air conditioning system on thermal responses of the elderly. Eight elderly men and eight university students sat for 90 minutes in a chair under the following 3 conditions: air conditioning system (A), floor heating system (F) and no heating system (C). The air temperature of sitting head height for condition A was 25 degrees C, and the maximum difference in vertical air temperature was 4 degrees C. The air and floor temperature for condition F were 21 and 29 degrees C, respectively. The air temperature for condition C was 15 degrees C. There were no significant differences in rectal temperature and mean skin temperature between condition A and F. Systolic blood pressure of the elderly men in condition C significantly increased compared to those in condition A and F. No significant differences in systolic blood pressure between condition A and F were found. The percentage of subjects who felt comfortable under condition F was higher than that of those under condition A in both age groups, though the differences between condition F and A was not significant. Relationships between thermal comfort and peripheral (e.g., instep, calf, hand) skin temperature, and the relationship between thermal comfort and leg thermal sensation were significant for both age groups. However, the back and chest skin temperature and back thermal sensation for the elderly, in contrast to that for the young, was not significantly related to thermal comfort. These findings suggested that thermal responses and physiological strain using the floor heating system did not significantly differ from that using the air conditioning system, regardless of the subject age and despite the fact that the air temperature with the floor heating system was lower. An increase in BP for elderly was observed under the condition in which the air temperature was 15 degrees C, and it was suggested that it was necessary for the elderly people to heat the room somehow in winter. Moreover, it is particularly important for elderly people to avoid a decrease in peripheral skin temperature, and maintain awareness of the warmth of peripheral areas, such as the leg, in order to ensure thermal comfort.  相似文献   

17.
Finger blood flow (BF) was measured by venous occlusion plethysmography using mercury-in-Silastic strain gauges during immersion of one hand in hot water (raised by steps of 2 degrees C every 10 min from 35 to 43 degrees C), the other being a control (kept immersed in water at 35 degrees C). The measurements were made in three different thermal states on separate days: 1) cool-25 degrees C, 40% rh, esophageal temperature (Tes) = 36.64 +/- 0.10 degrees C; 2) warm-35 degrees C, 40% rh, Tes = 36.71 +/- 0.11 degrees C; and 3) hot-35 degrees C, 80% rh with the legs immersed in water at 42 degrees C, Tes = 37.26 +/- 0.11 degrees C. When water temperature was raised at 42 degrees C, Tes = 37.26 +/- 0.11 When water temperature was raised to 39-41 degrees C in the warm state, finger BF in the hand heated locally (BFw) decreased. When water temperature was raised to 43 degrees C, however, BFw returned to the control value. In the hot state, Tes rose steadily, reaching 37.90 +/- 0.12 degrees C at the end of the 50-min sessions. BF in the control finger also increased gradually during the session. BFw showed a tendency to decrease when water temperature was raised to 39 degrees C, but the change was not greater than that observed in the warm state. In the cool state, no such reduction in BFw was observed when water temperature was raised to 39-41 degrees C. On the contrary, BFw increased at water temperatures of 41-43 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Plasma fibronectin was chemically modified by 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl (maleimide spin label). Only the free sulfhydryl groups of plasma fibronectin were modified by the label under the experimental conditions. The ESR spectrum of spin-labeled fibronectin showed that the sites of labeling were highly immobilized, suggesting that the sulfhydryl groups of the protein are in small, confined environments. The conversion of the strongly immobilized ESR spectrum into a weakly immobilized one was observed when the spin-labeled protein was heated from 30 to 60 degrees C, indicating the thermal unfolding of the protein molecules. The midpoint temperature for the thermal unfolding of plasma fibronectin is about 50 degrees C. The results suggest that plasma fibronectin is stable to about 40 degrees C and starts unfolding above this temperature. The rotational correlation time estimated from the ESR spectrum of spin-labeled fibronectin at 21 degrees C was about 2.0 X 10(-8) s. The rotational correlation time calculated from the Stokes-Einstein equation, assuming a rigid globular configuration for fibronectin with a Stokes radius of 10 nm, was about 7.8 X 10(-7) s. The differences in rotational correlation time by a factor of 39 between experimental and calculated values do not support a globular configuration for plasma fibronectin.  相似文献   

19.
To quantitatively relate heat killing and heat radiosensitization, asynchronous or G1 Chinese hamster ovary (CHO) cells at pH 7.1 or 6.75 were heated and/or X-irradiated 10 min later. Since no progression of G1 cells into S phase occurred during the heat and radiation treatments, cell cycle artifacts were minimized. However, results obtained for asynchronous and G1 cells were similar. Hyperthermic radiosensitization was expressed as the thermal enhancement factor (TEF), defined as the ratio of the D0 of the radiation survival curve to that of the D0 of the radiation survival curve for heat plus radiation. The TEF increased continuously with increased heat killing at 45.5 degrees C, and for a given amount of heat killing, the amount of heat radiosensitization was the same for both pH's. When cells were heated chronically at 42.4 degrees C at pH 7.4, the TEF increased initially to 2.0-2.5 and then returned to near 1.0 during continued heating as thermal tolerance developed for both heat killing and heat radiosensitization. However, the shoulder (Dq) of the radiation survival curve for heat plus radiation did not manifest thermal tolerance; i.e., it decreased continuously with increased heat killing, independent of temperature, pH, or the development of thermotolerance. These results suggest that heat killing and heat radiosensitization have a target(s) in common (TEF results), along with either a different target(s) or a difference in the manifestation of heat damage (Dq results). For clinical considerations, the interaction between heat and radiation was expressed as (1) the thermal enhancement ratio (TER), which is the dose of X rays alone divided by the dose of X rays combined with heat to obtain an isosurvival, e.g., 10(-4), and (2) the thermal gain factor (TGF), the ratio of the TER at pH 6.75 to the TER at pH 7.4. Since low pH reduced the rate of development of thermal tolerance during heating at low temperatures, low pH enhanced heat killing more at 42-42.5 degrees C than at 45.5 degrees C where thermal tolerance did not develop. Therefore, the increase in the TGF after chronic heating at 42-42.5 degrees C was greater than after acute heating at 45.5 degrees C, due primarily to the increase in heat killing causing an even greater increase in heat radiosensitization. These findings agree with animal experiments suggesting that in the clinic, a therapeutic gain for tumor cells at low pH may be greater for temperatures of 42-42.5 degrees C than of 45.5 degrees C.  相似文献   

20.
The effects of microwave radiation (2450 MHz, continuous wave, mean specific absorption rate of 103.5 +/- 4.2 W/kg) and convection heating on the nonphosphorylating oxidative metabolism of human peripheral mononuclear leukocytes (96% lymphocytes, 4% monocytes) at 37 degrees C were investigated. Metabolic activity, determined by chemiluminescence (CL) of cells challenged with luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) linked to bovine serum albumin, was detected with a brightness photometer. A significant stimulation after microwave exposure (p less than 0.005) over total CL of matched 37 degrees C incubator controls was observed. A similar degree of stimulation compared to incubator controls was also detected after sham treatment. There was no significant difference between changes in total CL or stimulation indices of the microwave and sham exposed groups. It appears that exposure to microwave radiation, under normothermic (37 +/- 0.03 degrees C) conditions, has no effect on the oxidative metabolic activity of human peripheral mononuclear leukocytes. However, the significant differences between microwave or sham exposed cells and their respective incubator controls occurred because the temperature of the incubator controls did not exceed 35.9 degrees C and this temperature required 39 minutes to reach from 22 degrees C. Slow heating of incubator controls must be accounted for in thermal and radiofrequency radiation studies in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号