首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of caveolae in stretch- versus flow-induced vascular responses was investigated using caveolin 1-deficient [knockout (KO)] mice. Portal veins were stretched longitudinally for 5 min (acute) or 72 h (organ culture). Basal ERK1/2 and Akt phosphorylation were increased in organ-cultured KO veins, as were protein synthesis and vessel wall cross sections. Stretch stimulated acute phosphorylation of ERK1/2 and long-term phosphorylation of focal adhesion kinase (FAK) and cofilin but did not affect Akt phosphorylation. Protein synthesis, and particularly synthesis of smooth muscle differentiation markers, was increased by stretch. These effects did not differ in portal veins from KO and control mice, which also showed the same contractile response to membrane depolarization and inhibition by the Rho kinase inhibitor Y-27632. KO carotid arteries had increased wall cross sections and responded to pressurization (120 mmHg) for 1 h with increased ERK1/2 but not Akt phosphorylation, similar to control arteries. Shear stress by flow for 15 min, on the other hand, increased phosphorylation of Akt in carotids from control but not KO mice. In conclusion, caveolin 1 contributes to low basal ERK1/2 and Akt activity and is required for Akt-dependent signals in response to shear stress (flow) but is not essential for trophic effects of stretch (pressure) in the vascular wall.  相似文献   

2.
The v-Src oncoprotein is translocated to integrin-linked focal adhesions, where its tyrosine kinase activity induces adhesion disruption and cell transformation. We previously demonstrated that the intracellular targeting of Src is dependent on the actin cytoskeleton, under the control of the Rho family of small G proteins. However, the assembly of v-Src into focal adhesions does not require its catalytic activity or myristylation-dependent membrane association. Here, we report that the SH3 domain is essential for the assembly of focal adhesions containing the oncoprotein by mediating a switch from a microtubule-dependent, perinuclear localization to actin-associated focal adhesions; furthermore, v-Src translocation to focal adhesions requires myosin activity, at least under normal conditions when the actin cytoskeleton is being dynamically regulated. Although the SH3 domain of v-Src is also necessary for its association with focal adhesion kinase (FAK), which is often considered a likely candidate mediator of focal adhesion targeting via its carboxy-terminal targeting sequence, we show here that binding to FAK is not essential for the targeting of v-Src to focal adhesions. The p85 regulatory subunit of phosphatidylinositol (PI) 3-kinase also associates with v-Src in an SH3-dependent manner, but in this case inhibition of PI 3-kinase activity suppressed assembly of focal adhesions containing the oncoprotein. Thus, the Src SH3 domain, which binds PI 3-kinase and which is necessary for activation of Akt downstream, is required for the actin-dependent targeting of v-Src to focal adhesions.  相似文献   

3.
The organization of the actin cytoskeleton can be regulated by soluble factors that trigger signal transduction events involving the Rho family of GTPases. Since adhesive interactions are also capable of organizing the actin-based cytoskeleton, we examined the role of Cdc42-, Rac-, and Rho-dependent signaling pathways in regulating the cytoskeleton during integrin-mediated adhesion and cell spreading using dominant-inhibitory mutants of these GTPases. When Rat1 cells initially adhere to the extracellular matrix protein fibronectin, punctate focal complexes form at the cell periphery. Concomitant with focal complex formation, we observed some phosphorylation of the focal adhesion kinase (FAK) and Src, which occurred independently of Rho family GTPases. However, subsequent phosphorylation of FAK and paxillin occurs in a Rho-dependent manner. Moreover, we found Rho dependence of the assembly of large focal adhesions from which actin stress fibers radiate. Initial adhesion to fibronectin also stimulates membrane ruffling; we show that this ruffling is independent of Rho but is dependent on both Cdc42 and Rac. Furthermore, we observed that Cdc42 controls the integrin-dependent activation of extracellular signal–regulated kinase 2 and of Akt, a kinase whose activity has been demonstrated to be dependent on phosphatidylinositol (PI) 3-kinase. Since Rac-dependent membrane ruffling can be stimulated by PI 3-kinase, it appears that Cdc42, PI 3-kinase, and Rac lie on a distinct pathway that regulates adhesion-induced membrane ruffling. In contrast to the differential regulation of integrin-mediated signaling by Cdc42, Rac, and Rho, we observed that all three GTPases regulate cell spreading, an event that may indirectly control cellular architecture. Therefore, several separable signaling pathways regulated by different members of the Rho family of GTPases converge to control adhesion-dependent changes in the organization of the cytoskeleton, changes that regulate cell morphology and behavior.  相似文献   

4.
Abstract: In SH-SY5Y human neuroblastoma cells, insulin-like growth factor (IGF)-I mediates membrane ruffling and growth cone extension. We have previously shown that IGF-I activates the tyrosine phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated protein kinase (ERK) 2. In the current study, we examined which signaling pathway underlies IGF-I-mediated FAK phosphorylation and cytoskeletal changes and determined if an intact cytoskeleton was required for IGF-I signaling. Treatment of SH-SY5Y cells with cytochalasin D disrupted the actin cytoskeleton and prevented any morphological changes induced by IGF-I. Inhibitors of phosphatidylinositol 3-kinase (PI 3-K) blocked IGF-I-mediated changes in the actin cytoskeleton as measured by membrane ruffling. In contrast, PD98059, a selective inhibitor of ERK kinase, had no effect on IGF-I-induced membrane ruffling. In parallel with effects on the actin cytoskeleton, cytochalasin D and PI 3-K inhibitors blocked IGF-I-induced FAK tyrosine phosphorylation, whereas PD98059 had no effect. It is interesting that cytochalasin D did not block IGF-I-induced ERK2 tyrosine phosphorylation. Therefore, it is likely that FAK and ERK2 tyrosine phosphorylations are regulated by separate pathways during IGF-I signaling. Our study suggests that integrity as well as dynamic motility of the actin cytoskeleton mediated by PI 3-K is required for IGF-I-induced FAK tyrosine phosphorylation, but not for ERK2 activation.  相似文献   

5.
An incomplete understanding of the molecular mechanisms responsible for myometrial activation from the quiescent pregnant state to the active contractile state during labor has hindered the development of effective therapies for preterm labor. Myometrial stretch has been implicated clinically in the initiation of labor and the etiology of preterm labor, but the molecular mechanisms involved in the human have not been determined. We investigated the mechanisms by which gestation-dependent stretch contributes to myometrial activation, by using human uterine samples from gynecologic hysterectomies and Cesarean sections. Here we demonstrate that the Ca requirement for activation of the contractile filaments in human myometrium increases with caldesmon protein content during gestation and that an increase in caldesmon phosphorylation can reverse this inhibitory effect during labor. By using phosphotyrosine screening and mass spectrometry of stretched human myometrial samples, we identify 3 stretch-activated focal adhesion proteins, FAK, p130Cas, and alpha actinin. FAK-Y397, which signals integrin engagement, is constitutively phosphorylated in term human myometrium whereas FAK-Y925, which signals downstream ERK activation, is phosphorylated during stretch. We have recently identified smooth muscle Archvillin (SmAV) as an ERK regulator. A newly produced SmAV-specific antibody demonstrates gestation-specific increases in SmAV protein levels and stretch-specific increases in SmAV association with focal adhesion proteins. Thus, whereas increases in caldesmon levels suppress human myometrium contractility during pregnancy, stretch-dependent focal adhesion signaling, facilitated by the ERK activator SmAV, can contribute to myometrial activation. These results suggest that focal adhesion proteins may present new targets for drug discovery programs aimed at regulation of uterine contractility.  相似文献   

6.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

7.
Cellular cytoskeletal remodeling reflects alterations in local biochemical and mechanical changes in terms of stress that manifests relocation of signaling molecules within and across the cell. Although stretching due to load and chemical changes by high homocysteine (HHcy) causes cytoskeletal re-arrangement, the synergism between stretch and HHcy is unclear. We investigated the contribution of HHcy in cyclic stretch-induced focal adhesion (FA) protein redistribution leading to cytoskeletal re-arrangement in mouse aortic endothelial cells (MAEC). MAEC were subjected to cyclic stretch (CS) and HHcy alone or in combination. The redistribution of FA protein, and small GTPases were determined by Confocal microscopy and Western blot techniques in membrane and cytosolic compartments. We found that each treatment induces focal adhesion kinase (FAK) phosphorylation and cytoskeletal actin polymerization. In addition, CS activates and membrane translocates small GTPases RhoA with minimal effect on Rac1, whereas HHcy alone is ineffective in both GTPases translocation. However, the combined effect of CS and HHcy activates and membrane translocates both GTPases. Free radical scavenger NAC (N-Acetyl-Cysteine) inhibits CS and HHcy-mediated FAK phosphorylation and actin stress fiber formation. Interestingly, CS also activates and membrane translocates another FA protein, paxillin in HHcy condition. Cytochalasin D, an actin polymerization blocker and PI3-kinase inhibitor Wortmannin inhibited FAK phosphorylation and membrane translocation of paxillin suggesting the involvement of PI3K pathway. Together our results suggest that CS- and HHcy-induced oxidative stress synergistically contribute to small GTPase membrane translocation and focal adhesion protein redistribution leading to endothelial remodeling.  相似文献   

8.
Stretch of the vascular wall by the intraluminal blood pressure stimulates protein synthesis and contributes to the maintenance of the smooth muscle contractile phenotype. The expression of most smooth muscle specific genes has been shown to be regulated by serum response factor and stimulated by increased actin polymerization. Hence we hypothesized that stretch-induced differentiation is promoted by actin polymerization. Intact mouse portal veins were cultured under longitudinal stress and compared with unstretched controls. In unstretched veins the rates of synthesis of several proteins associated with the contractile/cytoskeletal system (alpha-actin, calponin, SM22alpha, tropomyosin, and desmin) were dramatically lower than in stretched veins, whereas other proteins (beta-actin and heat shock proteins) were synthesized at similar rates. The cytoskeletal proteins gamma-actin and vimentin were weakly stretch-sensitive. Inhibition of Rho-associated kinase by culture of stretched veins with Y-27632 produced similar but weaker effects compared with the absence of mechanical stress. Induction of actin polymerization by jasplakinolide increased SM22alpha synthesis in unstretched veins to the level in stretched veins. Stretch stimulated Rho activity and phosphorylation of the actin-severing protein cofilin-2, although both effects were slow in onset (Rho-GTP, >15 min; cofilin-P, >1 h). Cofilin-2 phosphorylation of stretched veins was inhibited by Y-27632. The F/G-actin ratio after 24 h of culture was significantly greater in stretched than in unstretched veins, as shown by both ultracentrifugation and confocal imaging with phalloidin/DNase I labeling. The results show that stretch of the vascular wall stimulates increased actin polymerization, activating synthesis of smooth muscle-specific proteins. The effect is partially, but probably not completely, mediated via Rho-associated kinase and cofilin downstream of Rho.  相似文献   

9.
10.
Integrin-associated focal adhesions not only provide adhesive links between cellular actin and extracellular matrix but also are sites of signal transmission into the cell interior. Many cell responses signal through focal adhesion kinase (FAK), often by integrin-induced autophosphorylation of FAK or phosphorylation by Src family kinases. Here, we used an interfering FAK mutant (4-9F-FAK) to show that Src-dependent FAK phosphorylation is required for focal adhesion turnover and cell migration, by controlling assembly of a calpain 2/FAK/Src/p42ERK complex, calpain activation, and proteolysis of FAK. Expression of 4-9F-FAK in FAK-deficient fibroblasts also disrupts F-actin assembly associated with normal adhesion and spreading. In addition, we found that FAK's ability to regulate both assembly and disassembly of the actin and adhesion networks may be linked to regulation of the protease calpain. Surprisingly, we also found that the same interfering 4-9F-FAK mutant protein causes apoptosis of serum-deprived, transformed cells and suppresses anchorage-independent growth. These data show that Src-mediated phosphorylation of FAK acts as a pivotal regulator of both actin and adhesion dynamics and survival signaling, which, in turn, control apparently distinct processes such as cell migration and anchorage-independent growth. This also highlights that dynamic regulation of actin and adhesions (which include the integrin matrix receptors) is critical to signaling output and biological responses.  相似文献   

11.
Cells utilize dynamic interactions with the extracellular matrix to adapt to changing environmental conditions. Thrombospondin 1 (TSP1) induces focal adhesion disassembly and cell migration through a sequence (hep I) in its heparin-binding domain signaling through the calreticulin-low density lipoprotein receptor-related protein receptor complex. This involves the Galphai-dependent activation of ERK and phosphoinositide (PI) 3-kinase, both of which are required for focal adhesion disassembly. Focal adhesion kinase (FAK) regulates adhesion dynamics, acting in part by modulating RhoA activity, and FAK is implicated in ERK and PI 3-kinase activation. In this work, we sought to determine the role of FAK in TSP1-induced focal adhesion disassembly. TSP1/hep I does not stimulate focal adhesion disassembly in FAK knockout fibroblasts, whereas re-expressing FAK rescues responsiveness. Inhibiting FAK signaling through FRNK or FAK Y397F expression in endothelial cells also abrogates this response. TSP1/hep I stimulates a transient increase in FAK phosphorylation that requires calreticulin and Galphai, but not ERK or PI 3-kinase. Hep I does not activate ERK or PI 3-kinase in FAK knockout fibroblasts, suggesting activation occurs downstream of FAK. TSP1/hep I stimulates RhoA inactivation with kinetics corresponding to focal adhesion disassembly in a FAK, ERK, and PI 3-kinase-dependent manner. Furthermore, hep I does not stimulate focal adhesion disassembly in cells expressing constitutively active RhoA, suggesting that RhoA inactivation is required for this response. This is the first work to illustrate a connection between FAK phosphorylation in response to a soluble factor and RhoA inactivation, as well as the first report of PI 3-kinase and ERK in FAK regulation of RhoA activity.  相似文献   

12.
In endothelial cells, vascular endothelial growth factor (VEGF) induces an accumulation of stress fibers associated with new actin polymerization and rapid formation of focal adhesions at the ventral surface of the cells. This cytoskeletal reorganization results in an intense motogenic activity. Using porcine endothelial cells expressing one or the other type of the VEGF receptors, VEGFR1 or VEGFR2, or human umbilical vein endothelial cells pretreated with a VEGFR2 neutralizing antibody, we show that VEGFR2 is responsible for VEGF-induced activation of the stress-activated protein kinase-2/p38 (SAPK2/p38), phosphorylation of focal adhesion kinase (FAK), and enhanced migratory activity. Activation of SAPK2/p38 triggered actin polymerization whereas FAK, which was phosphorylated independently of SAPK2/p38, initiated assembly of focal adhesions. Both processes contributed to the formation of stress fibers. Geldanamycin, an inhibitor of HSP90 blocked tyrosine phosphorylation of FAK, assembly of focal adhesions, actin reorganization, and cell migration, all of which were reversed by overexpressing HSP90. We conclude that VEGFR2 mediates the physiological effect of VEGF on cell migration and that two independent pathways downstream of VEGFR2 regulate actin-based motility. One pathway involves SAPK2/p38 and leads to enhanced actin polymerization activity. The other involves HSP90 as a permissive signal transduction factor implicated in FAK phosphorylation and assembly of focal adhesions.  相似文献   

13.
Reactive oxygen species (ROS) function as signaling molecules mainly by reversible oxidation of redox-sensitive target proteins. ROS can be produced in response to integrin ligation and growth factor stimulation through Rac1 and its effector protein NADPH oxidase. One of the central roles of Rac1-NADPH oxidase is actin cytoskeletal rearrangement, which is essential for cell spreading and migration. Another important regulator of cell spread is focal adhesion kinase (FAK), a coordinator of integrin and growth factor signaling. Here, we propose a novel role for NADPH oxidase as a modulator of the FAK autophosphorylation site. We found that Rac1-NADPH oxidase enhanced the phosphorylation of FAK at Y397. This site regulates FAK's ability to act as a scaffold for EGF-mediated signaling, including activation of ERK. Accordingly, we found that EGF-induced activation of FAK at Y925, the following activation of ERK, and phosphorylation of FAK at the ERK-regulated S910-site depended upon NADPH oxidase. Furthermore, the inhibition of NADPH oxidase caused excessive focal adhesions, which is in accordance with ERK and FAK being modulators of focal adhesion dissociation. Our data suggest that Rac1 through NADPH oxidase is part of the signaling pathway constituted by FAK, Rac1, and ERK that regulates focal adhesion disassembly during cell spreading.  相似文献   

14.
Smooth muscle cells are able to adapt rapidly to chemical and mechanical signals impinging on the cell surface. It has been suggested that dynamic changes in the actin cytoskeleton contribute to the processes of contractile activation and mechanical adaptation in smooth muscle. In this review, evidence for functionally important changes in actin polymerization during smooth muscle contraction is summarized. The functions and regulation of proteins associated with "focal adhesion complexes" (membrane-associated dense plaques) in differentiated smooth muscle, including integrins, focal adhesion kinase (FAK), c-Src, paxillin, and the 27-kDa small heat shock protein (HSP27) are described. Integrins in smooth muscles are key elements of mechanotransduction pathways that communicate with and are regulated by focal adhesion proteins that include FAK, c-Src, and paxillin as well as proteins known to mediate cytoskeletal remodeling. Evidence that functions of FAK and c-Src protein kinases are closely intertwined is discussed as well as evidence that focal adhesion proteins mediate key signal transduction events that regulate actin remodeling and contraction. HSP27 is reviewed as a potentially significant effector protein that may regulate actin dynamics and cross-bridge function in response to activation of p21-activated kinase and the p38 mitogen-activated protein kinase signaling pathway by signaling pathways linked to integrin proteins. These signaling pathways are only part of a large number of yet to be defined pathways that mediate acute adaptive responses of the cytoskeleton in smooth muscle to environmental stimuli.  相似文献   

15.
It has been proposed that the focal adhesion kinase (FAK) mediates focal adhesion formation through tyrosine phosphorylation during cell adhesion. We investigated the role of FAK in focal adhesion structure and function. Loading cells with a glutathione-S-transferase fusion protein (GST-Cterm) containing the FAK focal adhesion targeting sequence, but not the kinase domain, decreased the association of endogenous FAK with focal adhesions. This displacement of endogenous FAK in both BALB/c 3T3 cells and human umbilical vein endothelial cells loaded with GST-Cterm decreased focal adhesion phosphotyrosine content. Neither cell type, however, exhibited a reduction in focal adhesions after GST-Cterm loading. These results indicate that FAK mediates adhesion-associated tyrosine phosphorylation, but not the formation of focal adhesions. We then examined the effect of inhibiting FAK function on other adhesion-dependent cell behavior. Cells microinjected with GST-Cterm exhibited decreased migration. In addition, cells injected with GST-Cterm had decreased DNA synthesis compared with control-injected or noninjected cells. These findings suggest that FAK functions in the regulation of cell migration and cell proliferation.  相似文献   

16.
Paxillin is involved in the regulation of Helicobacter pylori-mediated gastric epithelial cell motility. We investigated the signaling pathways regulating H. pylori-induced paxillin phosphorylation and the effect of the H. pylori virulence factors cag pathogenicity island (PAI) and outer inflammatory protein (OipA) on actin stress fiber formation, cell phenotype, and IL-8 production. Gastric cell infection with live H. pylori induced site-specific phosphorylation of paxillin tyrosine (Y) 31 and Y118 in a time- and concentration-dependent manner. Activated paxillin localized in the cytoplasm at the tips of H. pylori-induced actin stress fibers. Isogenic oipA mutants significantly reduced paxillin phosphorylation at Y31 and Y118 and reduced actin stress fiber formation. In contrast, cag PAI mutants only inhibited paxillin Y118 phosphorylation. Silencing of epidermal growth factor receptor (EGFR), focal adhesion kinase (FAK), or protein kinase B (Akt) expression by small-interfering RNAs or inhibiting kinase activity of EGFR, Src, or phosphatidylinositol 3-kinase (PI3K) markedly reduced H. pylori-induced paxillin phosphorylation and morphologic alterations. Reduced FAK expression or lack of Src kinase activity suppressed H. pylori-induced IL-8 production. Compared with infection with the wild type, infection with the cag PAI mutant and oipA mutant reduced IL-8 production by nearly 80 and 50%. OipA-induced IL-8 production was FAK- and Src-dependent, although a FAK/Src-independent pathway for IL-8 production also exists, and the cag PAI may be mainly involved in this pathway. We propose paxillin as a novel cellular target for converging H. pylori-induced EGFR, FAK/Src, and PI3K/Akt signaling to regulate cytoskeletal reorganization and IL-8 production in part, thus contributing to the H. pylori-induced diseases.  相似文献   

17.
Repair of superficial gastric mucosal injury is accomplished by the process of restitution-migration of epithelial cells to restore continuity of the mucosal surface. Actin filaments, focal adhesions, and focal adhesion kinase (FAK) play crucial roles in cell motility essential for restitution. We studied whether epidermal growth factor (EGF) and/or indomethacin (IND) affect cell migration, actin stress fiber formation, and/or phosphorylation of FAK and tensin in wounded gastric monolayers. Human gastric epithelial monolayers (MKN 28 cells) were wounded and treated with either vehicle or 0.5 mM IND for 16 hr followed by EGF. EGF treatment significantly stimulated cell migration and actin stress fiber formation, and increased FAK localization to focal adhesions, and phosphorylation of FAK and tensin, whereas IND inhibited all these at the baseline and EGF-stimulated conditions. IND-induced inhibition of FAK phosphorylation preceded changes in actin polymerization, indicating that actin depolymerization might be the consequence of decreased FAK activity. In in vivo experiments, rats received either vehicle or IND (5 mg/kg i.g.), and 3 min later, they received water or 5% hypertonic NaCl; gastric mucosa was obtained at 1, 4, and 8 hr after injury. Four and 8 hr after hypertonic injury, FAK phosphorylation was induced in gastric mucosa compared with controls. IND pretreatment significantly delayed epithelial restitution in vivo, and reduced FAK phosphorylation and recruitment to adhesion points, as well as actin stress fiber formation in migrating surface epithelial cells. Our study indicates that FAK, tensin, and actin stress fibers are likely mediators of EGF-stimulated cell migration in wounded human gastric monolayers and potential targets for IND-induced inhibition of restitution.  相似文献   

18.
In endothelial cells, X-chromosome linked inhibitor of apoptosis protein (XIAP) regulates cell survival, migration and adhesion. We have recently found that XIAP recruits focal adhesion kinase (FAK) into integrin-associated focal adhesions, controlling cell migration. However, little is understood about the molecular mechanisms by which FAK modulation is controlled by XIAP. In this study, we show that XIAP modulates FAK activity through the control of FAK phosphorylation. In bovine aortic endothelial cells (BAEC), phosphorylation of Tyr-576 in FAK is elevated by laminar shear stress. This elevated phosphorylation appears to be responsible for shear stress-stimulated ERK activation. We found that XIAP knockdown reduces shear stress-enhanced phosphorylation of Tyr-576 and induces shear stress-triggered translocation of FAK into nucleus. Nuclear translocation of FAK reduces contact between FAK and Src, a kinase which phosphorylates Tyr-576. This spatial segregation of FAK from Src decreases Tyr-576 phosphorylation and thus shear-stimulated ERK activation. Taken together, our results demonstrate that XIAP plays a key role in shear stress-stimulated ERK activation by maintaining the Src-accessible location of FAK.  相似文献   

19.
Attachment of cells to the extracellular matrix induces clustering of membrane receptor integrins which in turn triggers the formation of focal adhesions (FAs). The adaptor/scaffold proteins in FAs provide linkage to actin cytoskeleton, whereas focal adhesion kinase (FAK) and other FA-associated kinases and phosphatases transduce integrin-mediated signaling cascades, promoting actin polymerization and progression of cell spreading. In this study, we explored the role of OLA1, a newly identified member of Obg-like ATPases, in regulating cell adhesion processes. We showed that in multiple human cell lines RNAi-mediated downregulation of OLA1 significantly accelerated cell adhesion and spreading, and conversely overexpression of OLA1 by gene transfection resulted in delayed cell adhesion and spreading. We further found that OLA1-deficient cells had elevated levels of FAK protein and decreased Ser3 phosphorylation of cofilin, an actin-binding protein and key regulator of actin filament dynamics, while OLA1-overexpressing cells exhibited the opposite molecular alterations in FAK and cofilin. These findings suggest that OLA1 plays an important negative role in cell adhesion and spreading, in part through the regulation of FAK expression and cofilin phosphorylation, and manipulation of OLA1 may lead to significant changes in cell adhesion and the associated phenotypes.  相似文献   

20.
Stimulation of a number of cell surface receptors, including integrins and G protein-coupled receptors, results in the activation of a non-receptor tyrosine kinase known as focal adhesion kinase (FAK). In turn, this kinase is believed to play a critical role in signaling to intracellular kinase cascades controlling gene expression such as extracellular signal-regulated kinases (ERKs), by a yet poorly defined mechanism. Furthermore, whether this tyrosine kinase also mediates the activation of other mitogen-activated protein kinase family members, such as c-Jun NH(2)-terminal kinases (JNKs), is still unclear. We show here that the activation of FAK by anchoring to the cell membrane is itself sufficient to stimulate potently both ERK and JNK. These effects were found to be phosphatidylinositol 3-kinase-independent, as FAK effectively stimulated Akt, and wortmannin suppressed Akt but not ERK or JNK activation. As previously reported by others, activation of ERK correlated with the ability of FAK to induce tyrosine phosphorylation of Shc. Surprisingly, however, stimulation of JNK was not dependent on the kinase activity of FAK or on the ability to induce tyrosine phosphorylation of FAK substrates. Instead, we provide evidence that FAK may stimulate JNK through a novel pathway involving the recruitment of paxillin to the plasma membrane and the subsequent activation of a biochemical route dependent on small GTP-binding proteins of the Rho family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号