首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Focal articular cartilage damage can eventually lead to the onset of osteoarthritis with degradation around healthy articular cartilage. Currently, there are no drugs available that effectively repair articular cartilage damage. Several surgical techniques exist and are expected to prevent progression to osteoarthritis, but they do not offer a long‐term clinical solution. Recently, regenerative medicine approaches using human pluripotent stem cells (PSCs) have gained attention as new cell sources for therapeutic products. To translate PSCs to clinical application, appropriate cultures that produce large amounts of chondrocytes and hyaline cartilage are needed. So too are assays for the safety and efficacy of the cellular materials in preclinical studies including animal transplantation models. To confirm safety and efficacy, transplantation into the subcutaneous space and articular cartilage defects have been performed in animal models. All but one study we reviewed that transplanted PSC‐derived cellular products into articular cartilage defects found safe and effective recovery. However, for most of those studies, the quality of the PSCs was not verified, and the evaluations were done with small animals over short observation periods. Large animals and longer observation times are preferred. We will discuss the recent progress and future direction of the animal transplantation studies for the treatment of focal articular cartilage damages using PSCs.  相似文献   

2.
Osteoarthritis (OA) is a debilitating, degenerative joint disease characterized by progressive destruction of articular cartilage. Given the poor repair capacity of articular cartilage and the associated local destructive immune/inflammatory responses involving all joint structures, OA frequently ends up as a “whole joint failure” requiring prosthetic replacement. Current pharmacological efforts, belatedly started, mainly aim at symptomatic pain relief, underscoring the need for novel therapeutic schemes designed to modify the course of the disease. Mesenchymal stem cell (MSC)–based therapy has gained significant interest, sparking the design of multiple trials proving safety while providing promising preliminary efficacy results. MSCs possess ‘medicinal signaling cell’ properties related to their immunomodulatory and anti-inflammatory effects, which induce the establishment of a pro-regenerative microenvironment at the injured tissue. Those trophic effects are paralleled by the long-established chondroprogenitor capacity that can be harnessed to ex vivo fabricate engineered constructs to repair damaged articular cartilage. The present review focuses on these two aspects of the use of MSCs for articular cartilage damage, namely, cell therapy and tissue engineering, providing information on their use criteria, advancements, challenges and strategies to overcome them.  相似文献   

3.
Articular cartilage defects are considered a major health problem because articular cartilage has a limited capacity for self-regeneration 1. Untreated cartilage lesions lead to ongoing pain, negatively affect the quality of life and predispose for osteoarthritis. During the last decades, several surgical techniques have been developed to treat such lesions. However, until now it was not possible to achieve a full repair in terms of covering the defect with hyaline articular cartilage or of providing satisfactory long-term recovery 2-4. Therefore, articular cartilage injuries remain a prime target for regenerative techniques such as Tissue Engineering. In contrast to other surgical techniques, which often lead to the formation of fibrous or fibrocartilaginous tissue, Tissue Engineering aims at fully restoring the complex structure and properties of the original articular cartilage by using the chondrogenic potential of transplanted cells. Recent developments opened up promising possibilities for regenerative cartilage therapies.The first cell based approach for the treatment of full-thickness cartilage or osteochondral lesions was performed in 1994 by Lars Peterson and Mats Brittberg who pioneered clinical autologous chondrocyte implantation (ACI) 5. Today, the technique is clinically well-established for the treatment of large hyaline cartilage defects of the knee, maintaining good clinical results even 10 to 20 years after implantation 6. In recent years, the implantation of autologous chondrocytes underwent a rapid progression. The use of an artificial three-dimensional collagen-matrix on which cells are subsequently replanted became more and more popular 7-9.MACT comprises of two surgical procedures: First, in order to collect chondrocytes, a cartilage biopsy needs to be performed from a non weight-bearing cartilage area of the knee joint. Then, chondrocytes are being extracted, purified and expanded to a sufficient cell number in vitro. Chondrocytes are then seeded onto a three-dimensional matrix and can subsequently be re-implanted. When preparing a tissue-engineered implant, proliferation rate and differentiation capacity are crucial for a successful tissue regeneration 10. The use of a three-dimensional matrix as a cell carrier is thought to support these cellular characteristics 11.The following protocol will summarize and demonstrate a technique for the isolation of chondrocytes from cartilage biopsies, their proliferation in vitro and their seeding onto a 3D-matrix (Chondro-Gide, Geistlich Biomaterials, Wollhusen, Switzerland). Finally, the implantation of the cell-matrix-constructs into artificially created chondral defects of a rabbit''s knee joint will be described. This technique can be used as an experimental setting for further experiments of cartilage repair.  相似文献   

4.
Osteoarthritis is a chronic, debilitating joint disease characterized by progressive destruction of articular cartilage. Recently, a number of studies have identified a chondroprogenitor cell population within articular cartilage with significant potential for repair/regeneration. As yet, there are few robust biomarkers of these cells. In this study, we show that monoclonal antibodies recognizing novel chondroitin sulfate sulfation motif epitopes in glycosaminoglycans on proteoglycans can be used to identify metabolically distinct subpopulations of cells specifically within the superficial zone of the tissue and that flow cytometric analysis can recognize these cell subpopulations. Fluorochrome co-localization analysis suggests that the chondroitin sulfate sulphation motifs are associated with a range of cell and extracellular matrix proteoglycans within the stem cell niche that include perlecan and aggrecan but not versican. The unique distributions of these sulphation motifs within the microenvironment of superficial zone chondrocytes, seems to designate early stages of stem/progenitor cell differentiation and is consistent with these molecules playing a functional role in regulating aspects of chondrogenesis. The isolation and further characterization of these cells will lead to an improved understanding of the role novel chondroitin sulfate sulfation plays in articular cartilage development and may contribute significantly to the field of articular cartilage repair.  相似文献   

5.
Abstract

The limited regenerative capacity of articular cartilage and deficiencies of current treatments have motivated the investigation of new repair technologies. In vitro cartilage generation using primary cell sources is limited by cell availability and expansion potential. Pluripotent stem cells possess the capacity for chondrocytic differentiation and extended expansion, providing a potential future solution to cell-based cartilage regeneration. However, despite successes in producing cartilage using adult and embryonic stem cells, the translation of these technologies to the clinic has been severely limited. This review discusses recent advances in stem cell-based cartilage tissue engineering and the major current limitations to clinical translation of these products. Concerns regarding appropriate animal models and studies, stem cell manufacturing, and relevant regulatory processes and guidelines will be addressed. Understanding the significant hurdles limiting the clinical use of stem cell-based cartilage may guide future developments in the fields of tissue engineering and regenerative medicine.  相似文献   

6.
Articular cartilage (hyaline cartilage) defects resulting from traumatic injury or degenerative joint disease do not repair themselves spontaneously. Therefore, such defects may require novel regenerative strategies to restore biologically and biomechanically functional tissue. Recently, tissue engineering using a complex of cells and scaffold has emerged as a new approach for repairing cartilage defects and restoring cartilage function. With the advent of this new technology, accurate methods for evaluating articular cartilage have become important. In particular, in vivo evaluation is essential for determining the best treatment. However, without a biopsy, which causes damage, articular cartilage cannot be accurately evaluated in a clinical context. We have developed a novel system for evaluating articular cartilage, in which the acoustic properties of the cartilage are measured by introducing an ultrasonic probe during arthroscopy of the knee joint. The purpose of the current study was to determine the efficacy of this ultrasound system for evaluating tissue-engineered cartilage in an experimental model involving implantation of a cell/scaffold complex into rabbit knee joint defects. Ultrasonic echoes from the articular cartilage were converted into a wavelet map by wavelet transformation. On the wavelet map, the percentage maximum magnitude (the maximum magnitude of the measurement area of the operated knee divided by that of the intact cartilage of the opposite, nonoperated knee; %MM) was used as a quantitative index of cartilage regeneration. Using this index, the tissue-engineered cartilage was examined to elucidate the relations between ultrasonic analysis and biochemical and histological analyses. The %MM increased over the time course of the implant and all the hyaline-like cartilage samples from the histological findings had a high %MM. Correlations were observed between the %MM and the semiquantitative histologic grading scale scores from the histological findings. In the biochemical findings, the chondroitin sulfate content increased over the time course of the implant, whereas the hydroxyproline content remained constant. The chondroitin sulfate content showed a similarity to the results of the %MM values. Ultrasonic measurements were found to predict the regeneration process of the tissue-engineered cartilage as a minimally invasive method. Therefore, ultrasonic evaluation using a wavelet map can support the evaluation of tissue-engineered cartilage using cell/scaffold complexes.  相似文献   

7.
Osteoarthritis(OA) refers to a chronic joint disease characterized by degenerative changes of articular cartilage and secondary bone hyperplasia. Since articular cartilage has a special structure, namely the absence of blood vessels as well as the low conversion rate of chondrocytes in the cartilage matrix, the treatment faces numerous clinical challenges. Traditional OA treatment(e.g., arthroscopic debridement, microfracture, autologous or allogeneic cartilage transplantation,chondrocyte transplantation) is primarily symptomatic treatment and pain management, which cannot contribute to regenerating degenerated cartilage or reducing joint inflammation. Also, the generated mixed fibrous cartilage tissue is not the same as natural hyaline cartilage. Mesenchymal stem cells(MSCs) have turned into the most extensively explored new therapeutic drugs in cell-based OA treatment as a result of their ability to differentiate into chondrocytes and their immunomodulatory properties. In this study, the preliminary results of preclinical(OA animal model)/clinical trials regarding the effects of MSCs on cartilage repair of knee joints are briefly summarized, which lay a solid application basis for more and deeper clinical studies on cell-based OA treatment.  相似文献   

8.
Lesions of articular cartilage have a large variety of causes among which traumatic damage, osteoarthritis and osteochondritis dissecans are the most frequent. Replacement of articular defects in joints has assumed greater importance in recent years. This interest results in large part because cartilage defects cannot adequately heal themselves. Many techniques have been suggested over the last 30 years, but none allows the regeneration of the damaged cartilage, i.e. its replacement by a strictly identical tissue. In the first generation of techniques, relief of pain was the main concern, which could be provided by techniques in which cartilage was replaced by fibrocartilage. Disappointing results led investigators to focus on more appropriate bioregenerative approaches using transplantation of autologous cells into the lesion. Unfortunately, none of these approaches has provided a perfect final solution to the problem. The latest generation of techniques, currently in the developmental or preclinical stages, involve biomaterials for the repair of chondral or osteochondral lesions. Many of these scaffolds are designed to be seeded with chondrocytes or progenitor cells. Among natural and synthetic polymers, collagen- and polysaccharide-based biomaterials have been extensively used. For both these supports, studies have shown that chondrocytes maintain their phenotype when cultured in three dimensions. In both types of culture, a glycosaminoglycan-rich deposit is formed on the surface and in the inner region of the cultured cartilage, and type II collagen synthesis is also observed. Dynamic conditions can also improve the composition of such three-dimensional constructs. Many improvements are still required, however, in a number of key aspects that so far have received only scant attention. These aspects include: adhesion/integration of the graft with the adjacent native cartilage, cell-seeding with genetically-modified cell populations, biomaterials that can be implanted without open joint surgery and combined therapies, aimed at disease modification, pain relief and reduction of inflammation.  相似文献   

9.
The repair of joint surface defects remains a clinical challenge, as articular cartilage has a limited healing response. Despite this, articular cartilage does have the capacity to grow and remodel extensively during pre‐ and post‐natal development. As such, the elucidation of developmental mechanisms, particularly those in post‐natal animals, may shed valuable light on processes that could be harnessed to develop novel approaches for articular cartilage tissue engineering and/or regeneration to treat injuries or degeneration in adult joints. Much has been learned through mouse genetics regarding the embryonic development of joints. This knowledge, as well as the less extensive available information regarding post‐natal joint development is reviewed here and discussed in relation to their possible relevance to future directions in cartilage tissue repair and regeneration. J. Cell. Biochem. 107: 383–392, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The prevalence of suboptimal outcome for surgical interventions in the treatment of full-thickness articular cartilage damage suggests that there is scope for a materials-based strategy to deliver a more durable repair. Given that the superficial layer of articular cartilage creates and sustains the tribological function of synovial joints, it is logical that candidate materials should have surface viscoelastic properties that mimic native articular cartilage. The present paper describes force spectroscopy analysis by nano-indentation to measure the elastic modulus of the surface of a novel poly(vinyl alcohol) hydrogel with therapeutic potential as a joint implant. More than 1 order of magnitude decrease in the elastic modulus was detected after adsorption of a hyaluronic acid layer onto the hydrogel, bringing it very close to previously reported values for articular cartilage. Covalent derivatization of the hydrogel surface with fibronectin facilitated the adhesion and growth of cultured rat tibial condyle chondrocytes as evidenced morphologically and by the observance of metachromatic staining with toluidine blue dye. The present results indicate that hydrogel materials with potential therapeutic benefit for injured and diseased joints can be engineered with surfaces with biomechanical properties similar to those of native tissue and are accepted as such by their constituent cell type.  相似文献   

11.
The management of osteochondral defects of articular cartilage, whether from trauma or degenerative disease, continues to be a significant challenge for Orthopaedic surgeons. Current treatment options such as abrasion arthroplasty procedures, osteochondral transplantation and autologous chondrocyte implantation fail to produce repair tissue exhibiting the same mechanical and functional properties of native articular cartilage. This results in repair tissue that inevitably fails as it is unable to deal with the mechanical demands of articular cartilage, and does not prevent further degeneration of the native cartilage. Mesenchymal stem cells have been proposed as a potential source of cells for cell-based cartilage repair due to their ability to self-renew and undergo multi-lineage differentiation. This proposed procedure has the advantage of not requiring harvesting of cells from the joint surface, and its associated donor site morbidity, as well as having multiple possible adult donor tissues such as bone marrow, adipose tissue and synovium. Mesenchymal stem cells have multi-lineage potential, but can be stimulated to undergo chondrogenesis in the appropriate culture medium. As the majority of work with mesenchymal stem cell-derived articular cartilage repair has been carried out in vitro and in animal studies, more work still has to be done before this technique can be used for clinical purposes. This includes realizing the ideal method of harvesting mesenchymal stem cells, the culture medium to stimulate proliferation and differentiation, appropriate choice of scaffold incorporating growth factors directly or with gene therapy and integration of repair tissue with native tissue.  相似文献   

12.
The repair of articular cartilage is challenging owing to the restriction in the ability of articular cartilage to repair itself. Therefore, cell supplementation therapy is possible cartilage repair method. However, few studies have verified the efficacy and safety of cell supplementation therapy. The current study assessed the effect of exercise on early the phase of cartilage repair following cell supplementation utilizing mesenchymal stromal cell (MSC) intra-articular injection. An osteochondral defect was created on the femoral grooves bilaterally of Wistar rats. Mesenchymal stromal cells that were obtained from male Wistar rats were cultured in monolayer. After 4 weeks, MSCs were injected into the right knee joint and the rats were randomized into an exercise or no-exercise intervention group. The femurs were divided as follows: C group (no exercise without MSC injection); E group (exercise without MSC injection); M group (no exercise with MSC injection); and ME group (exercise with MSC injection). At 2, 4, and 8 weeks after the injection, the femurs were sectioned and histologically graded using the Wakitani cartilage repair scoring system. At 2 weeks after the injection, the total histological scores of the M and ME groups improved significantly compared with those of the C group. Four weeks after the injection, the scores of both the M and ME groups improved significantly. Additionally, the scores in the ME group showed a significant improvement compared to those in the M group. The improvement in the scores of the E, M, and ME groups at 8 weeks were not significantly different. The findings indicate that exercise may enhance cartilage repair after an MSC intra-articular injection. This study highlights the importance of exercise following cell transplantation therapy.  相似文献   

13.
Articular cartilage damage can lead to joint deformity, pain, and severe dysfunction. However, due to the lack of blood vessels and nerves in articular cartilage, the self‐healing capacity of damaged cartilage is limited. In this study, we overexpressed small ubiquitin‐like modifier (SUMO)1, SUMO2/3, and SUMO1/2/3 in bone marrow mesenchymal stem cells (BMSCs). Then, these cells were inoculated on surfaces of different hardness, and their differentiation into chondrocytes, hypoxic tolerance ability, and inflammatory response was detected. Finally, BMSCs were transplanted into the injured knee joint cavity of the rats, and the repair was evaluated. We found that BMSCs overexpressing SUMO1 were more likely to differentiate into articular cartilage along with the hardness of the surface, while BMSCs overexpressing SUMO2/3 could reduce inflammation response and improve the damaged cartilage microenvironment. In the rat model, BMSCs overexpressing SUMO1/2/3 transplanted on injured articular cartilage surface showed better survival, less inflammatory response, and improved tissue repair capability. In conclusion, BMSCs overexpressing SUMO are more tolerant to hypoxia conditions, and have stronger repair ability for damaged chondrocytes in vitro and for articular cartilage injury model in rats, and are excellent seed cells for repairing articular cartilage.  相似文献   

14.
15.
The formation of cartilage from stem cells during development is a complex process which is regulated by both local growth factors and biomechanical cues, and results in the differentiation of chondrocytes into a range of subtypes in specific regions of the tissue. In fetal development cartilage also acts as a precursor scaffold for many bones, and mineralization of this cartilaginous bone precursor occurs through the process of endochondral ossification. In the endochondral formation of bones during fetal development the interplay between cell signalling, growth factors, and biomechanics regulates the formation of load bearing bone, in addition to the joint capsule containing articular cartilage and synovium, generating complex, functional joints from a single precursor anlagen. These joint tissues are subsequently prone to degeneration in adult life and have poor regenerative capabilities, and so understanding how they are created during development may provide useful insights into therapies for diseases, such as osteoarthritis, and restoring bone and cartilage lost in adulthood. Of particular interest is how these tissues regenerate in the mechanically dynamic environment of a living joint, and so experiments performed using 3D models of cartilage development and endochondral ossification are proving insightful. In this review, we discuss some of the interesting models of cartilage development, such as the chick femur which can be observed in ovo, or isolated at a specific developmental stage and cultured organotypically in vitro. Biomaterial and hydrogel‐based strategies which have emerged from regenerative medicine are also covered, allowing researchers to make informed choices on the characteristics of the materials used for both original research and clinical translation. In all of these models, we illustrate the essential importance of mechanical forces and mechanotransduction as a regulator of cell behavior and ultimate structural function in cartilage. Birth Defects Research (Part C) 105:19–33, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The advancements in our understanding of the inflammatory and immune mechanisms in rheumatoid arthritis (RA) have fuelled the development of targeted therapies that block cytokine networks and pathogenic immune cells, leading to a considerable improvement in the management of RA patients. Nonetheless, no therapy is curative and clinical remission does not necessarily correspond to non-progression of joint damage. Hence, the biomedical community has redirected scientific efforts and resources towards the investigation of other biological aspects of the disease, including the mechanisms driving tissue remodelling and repair. In this regard, stem cell research has attracted extraordinary attention, with the ultimate goal to develop interventions for the biological repair of damaged tissues in joint disorders, including RA. The recent evidence that mesenchymal stem cells (MSCs) with the ability to differentiate into cartilage are present in joint tissues raises an opportunity for therapeutic interventions via targeting intrinsic repair mechanisms. Under physiological conditions, MSCs in the joint are believed to contribute to the maintenance and repair of joint tissues. In RA, however, the repair function of MSCs appears to be repressed by the inflammatory milieu. In addition to being passive targets, MSCs could interact with the immune system and play an active role in the perpetuation of arthritis and progression of joint damage. Like MSCs, fibroblast-like synoviocytes (FLSs) are part of the stroma of the synovial membrane. During RA, FLSs undergo proliferation and contribute to the formation of the deleterious pannus, which mediates damage to articular cartilage and bone. Both FLSs and MSCs are contained within the mononuclear cell fraction in vitro, from which they can be culture expanded as plastic-adherent fibroblast-like cells. An important question to address relates to the relationship between MSCs and FLSs. MSCs and FLSs could be the same cell type with functional specialisation or represent different functional stages of the same stromal lineage. This review will discuss the roles of MSCs in RA and will address current knowledge of the relative identity between MSCs and FLSs. It will also examine the immunomodulatory properties of the MSCs and the potential to harness such properties for the treatment of RA.  相似文献   

17.
Qi Y  Feng G  Yan W 《Molecular biology reports》2012,39(5):5683-5689
Osteoarthritis (OA) is a common disorder and the restoration of the diseased articular cartilage in patients with OA is still a challenge for researchers and clinicians. Currently, a variety of experimental strategies have investigated whether mesenchymal stem cells (MSCs) instead of chondrocytes can be used for the regeneration and maintenance of articular cartilage in OA. MSCs can modulate the immune response of individuals and positively influence the microenvironment of the stem cells already present in the diseased tissue. Through direct cell–cell interaction or the secretion of various factors, MSCs can initiate endogenous regenerative activities in the OA joint. Targeted gene-modified MSC-based therapy might further enhance the cartilage regeneration in OA. Conventionally, delivery of MSCs was attained by graft of engineered constructs derived from cell-seeded scaffolds. However, intra-articular MSCs transplantation without scaffolds is a more attractive option for OA treatment. This article briefly summarizes the current knowledge about MSC-based therapy for prevention or treatment of OA, discussing the direct intra-articular injection of MSCs for the treatment of OA in animal models and in clinical applications, as well as potential future strategies for OA treatment.  相似文献   

18.
Mammals rarely regenerate their lost or injured tissues into adulthood. MRL/MpJ mouse strain initially identified to heal full-thickness ear wounds now represents a classical example of mammalian wound regeneration since it can heal a spectrum of injuries such as skin and cardiac wounds, nerve injuries and knee articular cartilage lesions. In addition to MRL/MpJ, a few other mouse strains such as LG/J (a parent of MRL/MpJ) and LGXSM-6 (arising from an intercross between LG/J and SM/J mouse strains) have now been recognized to possess regenerative/healing abilities for articular cartilage and ear wound injuries that are similar, if not superior, to MRL/MpJ mice. While some mechanisms underlying regenerative potential have been begun to emerge, a complete set of biological processes and pathways still needs to be elucidated. Using a panel of healer and non-healer mouse strains, our recent work has provided some insights into the genes that could potentially be associated with healing potential. Future mechanistic studies can help seek the Holy Grail of regenerative medicine. This review highlights the regenerative capacity of selected mouse strains for articular cartilage, in particular, and lessons from other body tissues, in general.  相似文献   

19.
Articular cartilage damage and osteoarthritis (OA) are common orthopedic diseases in both humans and dogs. Once damaged, the articular cartilage seldom undergoes spontaneous repair because of its avascular, aneural, and alymphatic state, and the damage progresses to a chronic and painful situation. Dogs have distinctive characteristics compared to other laboratory animal species in that they share an OA pathology with humans. Dogs can also require treatment for naturally developed OA;therefore, effective treatment methods for OA are desired in veterinary medicine as well as in human medicine. Recently, interest has grown in regenerative medicine that includes the use of mesenchymal stem cells (MSCs). In cartilage repair, MSCs are a promising therapeutic tool due to their self-renewal capacity, ability to differentiate into cartilage, potential for trophic factor production, and capacity for immunomodulation. The MSCs from dogs (canine MSCs;cMSCs) share various characteristics with MSCs from other animal species, but they show some deviations, particularly in their differentiation ability and surface epitope expression. In vivo studies of cMSCs have demonstrated that intraarticular cMSC injection into cartilage lesions results in excellent hyaline cartilage regeneration. In clinical situations, cMSCs have shown great therapeutic effects, including amelioration of pain and lameness in dogs suffering from OA. However, some issues remain, such as a lack of regulations or guidelines and a need for unified methods for the use of cMSCs. This review summarizes what is known about cMSCs, including their in vitro characteristics, their therapeutic effects in cartilage lesion treatment in preclinical in vivo studies, their clinical efficacy for treatment of naturally developed OA in dogs, and the current limitations of cMSC studies.  相似文献   

20.
In this review article, we describe benefits and disadvantages of the established histochemical methods for studying articular cartilage tissue under normal, pathological and experimental conditions. We illustrate the current knowledge on cartilage tissue based on histological and immunohistochemical aspects, and in conclusion we provide a short overview on the degeneration of cartilage, such as osteoarthritis. Adult articular cartilage has low capacity to repair itself, and thus even minor injuries may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. Numerous efforts have been made to implement the knowledge in the study of cartilage in the last years, and histochemistry proved to be an especially powerful tool to this aim.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号