首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Brassica napus-B. juncea recombinant lines MX and MXS carrying a B. juncea major gene (JLml) in the genetic background of a spring- or a winter type B. napus cultivar, respectively, were tested for their resistance level to Leptosphaeria maculans under controlled conditions. Inoculation with three A-and four B-group individual isolates and with different mixtures of isolates realised within or between these groups was performed on cotyledons, leaves and stems. Cotyledons and leaves of the two recombinant lines were more resistant to A-group isolates than those of B. napus cultivars, except for one isolate recovered from the MX line. The recombinant lines were susceptible at cotyledon stage and resistant on leaves to B-group isolates, as were B. napus cultivars. On stems, severe cortical damage was usually produced on B. napus cultivars by some A-group isolates, whereas B-group isolates induced pith blackening on all genotypes. Stems of the MX line and the resistant donor species (B. juncea cv. Picra) were more resistant than those of the susceptible B. napus (cv. Westar) to the individual A-group isolates. Cultivar Picra was the most susceptible genotype to pith infection caused by the B-group isolates. The consequence of the host pathogen differential interactions on the durability of the monogenic resistance to L. maculans introduced from B. juncea into B. napus is discussed.  相似文献   

2.
This paper examines the level of pathogenic diversity in Australian Fusarium pseudograminearum and Fusarium graminearum isolates for head blight from the assessment of 51 wheat germplasm lines, barley, triticale, rye, maize and sorghum plants. A set of nine putative wheat differentials were selected and assessed with 10 F. graminearum and 12 F. pseudograminearum isolates. Isolates of both species were pathogenic on all the wheat germplasm lines, barley triticale and rye. The isolates differed largely in a quantitative way with only small differential effects and were statistically demarcated into three pathogenicity groups: low, intermediate and high. Such distribution patterns suggest that wheat germplasm lines employ different resistance mechanisms to each group of isolates and the three pathogenicity groups may have different mechanisms controlling pathogenicity. The aggressiveness of F. graminearum and F. pseudograminearum isolates on the wheat germplasm lines were marginally correlated (r = 0.40). Durum wheats were ranked as the most susceptible while Sumai 3, Ituo Komugi, Sotome A, Sotome and Nobeokabouzu komugi were consistently grouped as resistant by both species. These findings reiterate the need to consider pathogen variability in the screening, selection and improvement of resistance to head blight in wheat.  相似文献   

3.
A total of forty eight accessions of barley landraces from Morocco were screened for resistance to powdery mildew. Twenty two (46%) of tested landraces showed resistance reactions and thirty four single plant lines were selected. Eleven of these lines were tested in seedling stage with seventeen and another twenty three lines with twenty three isolates of powdery mildew respectively. The isolates were chosen according to the virulence spectra observed on the ‘Pallas’ isolines differential set. Line 229–2–2 was identified with resistance to all prevalent in Europe powdery mildew virulence genes. Lines 230–1–1, 248–1–3 showed susceptible reaction for only one and lines 221–3–2, 227–1–1, 244–3–4 for only two isolates respectively. Three different resistance alleles (Mlat, Mla6, and MLA14) were postulated to be present in tested lines alone or in combination. In thirty (88%) tested lines it was impossible to determine which specific gene or genes for resistance were present. Most probably these lines possessed alleles not represented in the ‘Pallas’ isolines differential set. The distribution of reaction type indicated that about 71% of all reaction types observed were classified as powdery mildew resistance (scores 0, 1 and 2). Majority (79%) of resistance reaction types observed in tested lines was intermediate resistance reaction type two and twenty three lines (68%) showed this reaction for inoculation with more than 50% isolates used. The use of new effective sources of resistance from Moroccan barley landraces for diversification of resistance genes for powdery mildew in barley cultivars was discussed.  相似文献   

4.
In glasshouse tests, infective sap from plants infected with 17 different isolates of Tomato spotted wilt virus (TSWV) from four Australian states was inoculated to three Capsicum chinense accessions (PI 152225, PI 159236 and C00943) carrying single genes that confer hypersensitive resistance to TSWV. The normal response to inoculation was development of necrotic (hypersensitive) local lesions in inoculated leaves without systemic invasion, but 3/1386 infected plants also developed systemic susceptible reactions in addition to hypersensitive ones. Similarly when two isolates were inoculated to C. chinense backcross progeny plants, 1/72 developed systemic susceptible reactions in addition to localised hypersensitive ones. Using cultures from the four plants with susceptible reactions and following three to five further cycles of serial subculture in TSWV‐resistant C. chinense plants, four isolates were obtained that gave systemic susceptible type reactions in the three TSWV‐resistant accessions, and in TSWV‐resistant cultivated pepper (C. annuum). When three of these isolates were inoculated to tomato (Lycopersicon esculentum) breeding lines with single gene resistance to TSWV, resistance was not overcome. Similarly, none of the four isolates overcame partial resistance to TSWV in Lactuca virosa. When TSWV isolates were inoculated to tomato breeding lines carrying partial resistance from L. chilense, systemic infection developed which was sometimes followed by ‘recovery’. After four successive cycles of serial passage in susceptible cultivated pepper of a mixed culture of a resistance‐breaking isolate with the non resistance‐breaking isolate from which it came, the resistance‐breaking isolate remained competitive as both were still found. However, when the same resistance‐ breaking isolate was cultured alone, evidence of partial reversion to wild‐type behaviour was eventually obtained after five but not four cycles of long term serial subculture in susceptible pepper, as by then the culture had become a mixture of both types of strain. This work suggests that resistance‐breaking strains of TSWV that overcome single gene hypersensitive resistance in pepper are relatively stable. The findings have important implications for situations where resistant pepper cultivars are deployed widely in the field without taking other control measures as part of an integrated TSWV management strategy.  相似文献   

5.
Seventy isolates of Fusarium oxysporum f.sp. ciceris (Foc) causing chickpea wilt representing 13 states and four crop cultivation zones of India were analysed for their virulence and genetic diversity. The isolates of the pathogen showed high variability in causing wilt incidence on a new set of differential cultivars of chickpea, namely C104, JG74, CPS1, BG212, WR315, KWR108, GPF2, DCP92‐3, Chaffa and JG62. New differential cultivars for each race were identified, and based on differential responses, the isolates were characterized into eight races of the pathogen. The same set of isolates was used for molecular characterization with four different molecular markers, namely random amplified polymorphic DNA, universal rice primers, simple sequence repeats and intersimple sequence repeats. All the four sets of markers gave 100% polymorphism. Unweighted paired group method with arithmetic average analysis grouped the isolates into eight categories at genetic similarities ranging from 37 to 40%. The molecular groups partially corresponded to the states of origin/chickpea‐growing region of the isolates as well as races of the pathogen characterized in this study. The majority of southern, northern and central Indian populations representing specific races of the pathogen were grouped separately into distinct clusters along with some other isolates, indicating the existence of variability in population predominated by a single race of the pathogen. The present race profiling for the Indian population of the pathogen and its distribution pattern is entirely new. The knowledge generated in this study could be utilized in resistance breeding programme. The existence of more than one race, predominated by a single one, in a chickpea cultivation zone as supported by the present molecular findings is also a new information.  相似文献   

6.
Aims: The aim of this study is to investigate the pathogenic diversity and virulence groups among Pyrenophora teres f. teres isolates, sampled from Syria and Tunisia, and to identify the most effective source of resistance in barley that could be used in breeding programmes to control net blotch in both countries. Methods and Results: One hundred and four isolates of P. teres f. teres were collected from barley in different agroecological zones of Tunisia and Syria. Their virulence was evaluated using 14 barley genotypes as differential hosts. The upgma clustering identified high pathogenic variability; the isolates were clustered onto 20 pathotypes that were sheltered under three virulence groups, with high, intermediate and low disease scores. According to susceptibility/resistance frequencies and mean disease ratings, CI05401 cultivar ranked as the best differential when inoculated with the Syrian isolates. However, CI09214 cultivar was classified as the best effective source of resistance in Tunisia. Conclusions: All P. teres f. teres isolates were differentially pathogenic. CI09214 and CI05401 cultivars were released as the most effective sources of resistance in Syria and Tunisia. Significance and Impact of the Study: National and international barley breeding programmes that seek to develop resistance against P. teres f. teres in barley should strongly benefit from this study. This resistance cannot be achieved without the proper knowledge of the pathogen virulence spectrum and the sources of host resistance.  相似文献   

7.
The virulence spectrum of 23 monopycnidiospore isolates of Mycosphaerella graminicola was determined using wheat genotypes that carried different resistance genes (Stb1Stb8 and Stb15). Disease severity was measured as the percentage of necrotic leaf area. The isolates used in the experiments were of diverse origin: eight from Poland, seven from Germany, and eight from other countries around the world. Analysis of variance revealed significant differences in the virulence of the isolates. Using multiple regression and Cook’s D statistic, 26 significant cultivar × isolate interactions were detected. The Israeli isolate IPO86036 showed the widest spectrum of specific reactions. It expressed specific virulence on at least four cultivars and specific avirulence on at least three. The other isolates showed specific interactions with 1–6 different cultivars. Despite the limited number of isolates that were tested, we recommend that a number of resistant lines, namely cultivars Veranopolis (Stb2), Cs/Synthetic 7D (Stb5), Arina (Stb15, Stb6 and partial resistance), and Liwilla (unknown resistance factors), could be incorporated into central European wheat breeding programmes that are aimed at developing resistance against septoria tritici blotch. In contrast, resistance gene Stb7, which is carried by cultivar Estanzuela Federal, was ineffective against most of the isolates that were used. These results on the virulence spectrum of M. graminicola isolates provide valuable information for effective wheat breeding programmes to develop resistance to the pathogen.  相似文献   

8.
In glasshouse tests, sap from plants infected with 15 different isolates of tomato spotted wilt tospovirus (TSWV) from three Australian states was inoculated to nine genotypes of tomato carrying TSWV resistance gene Sw-5 or one of its alleles. A further two resistant tomato genotypes were inoculated with four isolates each. The normal response in resistant genotypes was development of necrotic local lesions in inoculated leaves without systemic invasion, but 22/752 plants also developed systemic reactions in addition to local hypersensitive ones. Using cultures from two of these systemically infected plants and following four cycles of subculture in TSWV resistant tomato plants, two isolates were obtained that gave susceptible type systemic reactions but no necrotic spots in inoculated leaves of resistant tomatoes. When these two isolates, DaWA-1d and ToTAS-1d, were maintained by repeated subculture for 10 successive cycles in Nicotiana glutinosa or a susceptible tomato genotype, they still induced susceptible type systemic reactions when inoculated to resistant tomato plants. They were therefore stable resistance breaking isolates as regards overcoming gene Sw-5. When resistance-breaking isolate DaWA-1ld multiplied together with original isolate DaWA-l in susceptible tomato, it was fully competitive with the original isolate. However, when DaWA-ld and ToTAS-ld were inoculated to TSWV resistant Lycopersicon peruvianum lines PI 128660R and PI 128660S and to TSWV resistant Capsicum chinense lines PI 152225, PI 159236 and AVRDC CO0943, they failed to overcome the resistance, producing only necrotic local lesions without systemic infection. Thus, although the ease of selection, stability and competitive ability of resistance breaking isolates of TSWV is cause for concern, L. peruvianum and C. chinense lines are available which are effective against them. The effectiveness of the resistance to TSWV in nine tomato genotypes was examined in a field experiment. Spread was substantial in the susceptible control genotype infecting 42% of plants. Resistance was ineffective in cv. Bronze Rebel, 26% of plants developing infection. In contrast, it held up well in the other eight resistant genotypes with only 1–3 or no plants of each becoming infected. Accumulated numbers of Thrips tabaci, Frankliniella occidentalis and F. schultzei were closely correlated with TSWV spread.  相似文献   

9.
The resistance structure of a Turkish population of the clonal, apomictic composite Chondrilla juncea and the pathotypic structure of a co-occurring population of its obligate rust pathogen, Puccinia chondrillina, was determined by sequential inoculation of 19 host lines with 15 pathogen isolates each derived from single pustules collected from separate plants among the host population. The resultant matrix of resistant and susceptible reactions provides strong circumstantial evidence for a gene-for-gene interaction. Seven distinct pathotypes were detected in the pathogen population. One of these comprised 53% of the population, a second comprised 13%, while the remaining five pathotypes were each detected only once. The host population was similarly diverse, being composed of eight resistance phenotypes, only two of which were represented by more than one host line. Although C. juncea is apomictic, there was only 58% congruence between host resistance and multi-locus isozyme phenotype categories within this population. Pathotypic phenotypes of 13 other isolates of P. chondrillina collected from ten other Turkish and three more distant populations of C. juncea were markedly different from those found in the population studied in detail. There was no obvious relationship between the degree of geographic separation of pathotypes and their ability to attack particular C. juncea lines in this or three other populations represented by single host lines. Received: 10 March 1997 / Accepted: 4 August 1997  相似文献   

10.
Populations of wild flax, Linum marginale and its associated rust fungus Melampsora lini growing at Kiandra, New South Wales, Australia, were sampled during the 1986–1987 growing season. Thirteen different races of M. lini were detected in a sample of 96 isolates. The distribution of isolates was uneven: race A comprised 73% of the samples; race N, 8%; and race H, 5%; while the remaining races were represented by only one or two samples. The dominance of race A increased over the course of the growing season, comprising 67% of the early season samples and increasing to 78% for those collected late in the season. The overall diversity of the pathogen population decreased late in the growing season, but this trend was not statistically significant. The average virulence of individual isolates of the pathogen population increased during the growing season. This trend was most pronounced among the minor races, where the mean number of differential hosts infected increased from 4.58 for early season samples to 5.12 and 5.08 for mid and late season samples, respectively. In contrast to the virulence pattern in the pathogen, the L. marginale population displayed a more even distribution of resistance. In a sample of 67 plants 10 resistance phenotypes were detected from their pattern of resistance/susceptibility to seven pathogen isolates. No phenotype had a frequency that exceeded 30%. Resistance phenotypes were randomly distributed on both a population level and on a fine scale.  相似文献   

11.
The interaction between sunflower plants showing a high level of quantitative resistance and five Plasmopara halstedii (the causal agent of downy mildew) isolates of several races were studied using five single zoosporangium isolates per pathogen isolate. Aggressiveness criteria were analyzed for 25 P. halstedii single zoosporangium isolates. Based on the reaction for the P. halstedii isolates to four sunflower hybrids H1–H4 varying only in their downy mildew resistance genes, there were differences in virulence spectrum in pathogen isolates. Analysis of five single zoosporangium isolates for P. halstedii isolates showed significant variability within pathogen isolate for all aggressiveness criteria but not for all pathogen isolates. The hypothesis explaining the interaction between P. halstedii and its host plant was discussed on the level of pathogenicity.  相似文献   

12.
To facilitate resistance gene characterization in the present study, the pathogenicities of newly collected blast isolates from rice fields in the Philippines were characterized using international blast differential varieties consisting of 31 monogenic lines that target 24 resistance genes. To classify and designate the blast isolates, we used a new international blast designation system, which has been proposed as a suitable naming system for comparing blast races among different studies. A total of 23 rice blast isolates collected from the Philippines were classified into 16 pathotypes, which showed reaction patterns different from those seen in the standard isolates. Among the blast pathotypes, 11 had differentiating ability for four Pik alleles (Pik, Pik‐m, Pik‐h, and Pik‐p) and Pi1, whereas the standard blast isolates from the Philippines were not able to differentiate these genes. In addition, several blast isolates were avirulent to IRBLt‐K59, IRBL19‐A, and Lijiangxintuanheigu, although the standard differential blast isolates were virulent to these lines. Moreover, two blast isolates were virulent to a monogenic line, IRBL9‐W, which harbours Pi9 and was resistant to all standard differential blast isolates. By using the isolates avirulent to IRBL19‐A, Pi19(t) was successfully mapped in the centromeric region on chromosome 12 with simple sequence repeat markers RM27937 and RM1337. These markers are useful for marker‐assisted Pi19(t) introgression worldwide.  相似文献   

13.
Based on sirodesmin production and pathogenicity tests with Brassica cotyledons, strains of Leptosphaeria maculans were classified as aggressive (pathotype group A), or non-aggressive (pathotype group NA). NA strains caused no differential reactions. However, the pathotype group A could be divided into 5 sub-groups. AO isolates caused non-sporulating lesions with dark margins while Al isolates sporulated on cotyledons of most Brassica hosts tested. Only the cv. Erfurter Zwerg (B. oleracea var. botrytis) reacted resistant against AO and Al strains. A2 isolates caused resistance reactions on cotyledons of the cvs. Quinta (B. napus var. oleifera) and Runde (B. rapa var. rapa). A3 and A4 isolates were not detectable in our material. Isolates of these pathotype groups, supplied by Dr. P. H. Williams, Madison, USA, caused differential reactions on the oilseed rape cvs. Glacier, Quinta and Jet Neuf. In glasshouse and field experiments strains of pathotype groups Al, A2 and NA were tested on true leaves and hypocotyls of different oilseed rape cultivars. The low aggressiveness of NA isolates was evident under all experimental conditions. A2 strains caused resistance reactions not only on cotyledons but also on true leaves and hypocotyls of Quinta. Moreover, compared with Al, pathotype group A2 was more aggressive on hypocotyls of Jet Neuf. The resistance of this cultivar against Al isolates was clearly visible on hypocotyls and true leaves but not on cotyledons.  相似文献   

14.
Vibrio vulnificus is a serious opportunistic human pathogen commonly found in subtropical coastal waters, and is the leading cause of seafood-borne mortality in the USA. This taxon does not sustain prolonged presence in clinical or agricultural settings, where it would undergo human-induced selection for antibiotic resistance. Therefore, few studies have verified the effectiveness of commonly prescribed antibiotics in V. vulnificus treatment. Here we screened 151 coastal isolates and 10 primary septicaemia isolates against 26 antimicrobial agents representing diverse modes of action. The frequency of multiple resistances to antibiotics from all sources was unexpectedly high, particularly during summer months, and a substantial proportion of isolates (17.3%) were resistant to eight or more antimicrobial agents. Numerous isolates demonstrated resistance to antibiotics routinely prescribed for V. vulnificus infections, such as doxycycline, tetracycline, aminoglycosides and cephalosporins. These resistances were detected at similar frequencies in virulent and non-virulent strains (PCR-based virulence typing) and were present in septicaemia isolates, underlying the public health implications of our findings. Among environmental isolates, there were no consistent differences in the frequency of resistance between pristine and anthropogenically impacted estuaries, suggesting natural rather than human-derived sources of resistance traits. This report is the first to demonstrate prevalent antibiotic resistance in a human pathogen with no clinical reservoirs, implying the importance of environmental studies in understanding the spread, evolution and public health relevance of antibiotic resistance factors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
A Pathotype Classification for Mycosphaerella pinodes   总被引:1,自引:0,他引:1  
Genetic variation of Mycosphaerella pinodes in the pathogenesis of Pisum sativum is described for the first time. On a particular host line, isolates varied from those producing a few necrotic flecks to those causing large lesions on stems or leaves. Based on reactions of nine differential host lines, 45 isolates from a wide range of geographical locations could be classed, by stem symptoms, into 9 groups or, by leaf symptoms, into 16 groups.  相似文献   

16.
Angular leaf spot disease of common bean (Phaseolus vulgaris), caused by Phaeoisariopsis griseola, is one of the most important disease of this crop in Brazil. Control strategies for the disease include cultural practices, chemical control and genetic resistance. This pathogen is known to vary greatly in pathogenicity. For durable use of genetic resistance to control this disease, it is necessary to manage resistant cultivars by taking into account the population structure of P. griseola. Isolates of the pathogen from Goias, Brazil exhibited an important virulence polymorphism when inoculated on 12 differential cultivars. A total of 13 pathotypes was identified within a series of 96 isolates collected in Inhumas and Damolandia counties. Only pathotypes 63‐15, 63‐23, 63‐31 and 63‐63 were identified in both counties. Since all the isolates were capable of inducing disease in both Andean and Mesoamerican differential cultivars, they were considered to be of Mesoamerican origin. Random amplified polymorphic DNA (RAPD) analysis performed on the same 96 isolates revealed a great genetic diversity clustering the series into five groups at an Euclidean distance of 62.5%. Although the results did not show any clustering according to the isolate origin, it was possible to observe a tendency of the isolates to cluster in different groups according to their origin. No pathotype‐specific band was observed in the present study.  相似文献   

17.
Thirty-one Brassica juncea accessions were screened at the cotyledon stage for resistance to four isolates of Peronospora parasitica. Isolates R1 and P003 were derived from crops of oilseed rape (B. napus ssp. oleifera) in the UK and isolates IP01 and IP02 were derived from crops of mustard (B. juncea) in India. B. napus cv. Ariana, which was used as a susceptible control for isolates from B. napus, was resistant to isolates from B. juncea. All, B. juncea accessions were resistant to isolates from B. napus except one accession which expressed moderate resistance to isolate P003. Five groups of B. juncea accessions with differential resistance were identified. Lines homogeneous for resistance were selected from seedling populations of accessions that exhibited a heterogeneous reaction to isolates from B. juncea. The differential resistance identified in the B. juncea-P. parasitica combination can be used as a foundation for future studies of the genetics of the host-pathogen interaction and for breeding for disease resistance.  相似文献   

18.
Reactions to two subgroup I isolates (Fny-CMV and Pf-CMV) and two subgroup II isolates (A9-CMV and LS-CMV) of cucumber mosaic virus (CMV) were studied in three non tuber-bearing wild potato species (Solanum spp.) of the series Etuberosa, and in two tuber-bearing interspecific potato hybrids and four potato cultivars using graft-inoculation. Three classes of phenotypic reactions (susceptible, hypersensitive, extreme resistance) were observed in the tuber-bearing genotypes. Susceptible genotypes developed mosaic or severe mosaic with leaf malformation and had high CMV titres. Hypersensitive genotypes developed either top necrosis or vein necrosis and/or necrotic spots on apical leaves, and had low CMV titres. Extremely resistant genotypes had no symptoms and no CMV was detected. The hybrid 87HW13.7 (S. tuberosum×S. multidissectum) developed top necrosis specific to infection with Fny-CMV. The hybrid ‘A6’ (S. demissum×S. tuberosum cv. Aquila) was hypersensitive to all CMV isolates tested. Extreme resistance was not functional against all CMV isolates. Neither hypersensitivity nor extreme resistance were related to the CMV subgroup.  相似文献   

19.
Brown rust of barley (Puccinia hordei) is widespread in New Zealand and causes crop losses in some years. The cultivars presently grown lack adequate genetic resistance but a highly resistant line has been produced. Twelve different virulence combinations were identified in the pathogen population using the Welsh differential lines; there were differences between North Island and South Island isolates; and no virulence was observed for resistance conferred by factors Pa 3 and Pa 7.  相似文献   

20.
We determined DNA fingerprint haplotypes and pathotypes of the rice‐blast fungus Magnaporthe grisea collected from 13 areas in China. This DNA fingerprinting analysis, using rep‐PCR, of 381 haplotypes (482 isolates) from China indicated that the M. grisea populations cannot be delineated into region‐specific groups. Analyses of the number of alleles (na), Nei's gene diversity, unbiased genetic distance, and Shannon's Information index among 13 populations showed that clusters were not related to the geographic distance between populations with the exception of the Ningxia (NX) and Jilin (JL) cluster. Among northern populations, NX and JL were more similar to one another than to other populations. Pathogen populations consisting of 121 isolates from China were grouped into 53 pathotypes on the basis of disease reaction in differential rice lines. Isolates assayed for pathotypes were detected based on disease reactions. No correlation was observed between fingerprint groups and pathotypes of the pathogen. High frequency of virulence was found on the rice line Shin2 (Pi‐ks and Pi‐sh) followed by PiNo.4 (Pi‐ta2 and Pi‐sh) and K1 (Pi‐ta), while it was low on Kanto 51 (Pi‐k + ?), K3 (Pi‐kh), and Fujisaka (Pi‐i and Pi‐sh). Virulence was rare on Toride 1 (Pi‐zt and Pi‐sh). Tetep (Pi‐kh + ?) was predicted to be a highly effective, as none of the isolates infected this line. These blast‐resistant rice lines can be used in resistance breeding for the effective management of rice blast in the respective regions of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号