共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A Cellular Repressor of E1A-Stimulated Genes That Inhibits Activation by E2F 总被引:14,自引:1,他引:14
下载免费PDF全文

Elizabeth Veal Michael Eisenstein Zian H. Tseng Grace Gill 《Molecular and cellular biology》1998,18(9):5032-5041
4.
Rob Hooft van Huijsduijnen R. Kiplin Guy Kelly Chibale Richard K. Haynes Ingmar Peitz Gerhard Kelter Margaret A. Phillips Jonathan L. Vennerstrom Yongyuth Yuthavong Timothy N. C. Wells 《PloS one》2013,8(12)
We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. 相似文献
5.
6.
7.
8.
9.
Amanda B. Parrish Christopher D. Freel Sally Kornbluth 《Cold Spring Harbor perspectives in biology》2013,5(6)
Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death.Apoptosis is a form of programmed cell death that eliminates individual cells within an organism while preserving the overall structure of surrounding tissue. Many of the prominent morphological features of apoptosis were first described in 1972 by Kerr, Wyllie, and Currie (Kerr et al. 1972). However, it was not until the mid-1990s that apoptosis was linked to the activation of the cysteine-dependent aspartate-driven proteases (caspases), which cleave key intracellular substrates to promote cell death (Cerretti et al. 1992; Nicholson et al. 1995; Alnemri et al. 1996; Liu et al. 1996; Thornberry and Lazebnik 1998). Given the critical role that caspases play in dismantling the cell during apoptosis, their activation and subsequent activity are highly regulated. Failure of a cell to properly modulate caspase activity can cause aberrant or untimely apoptotic cell death, potentially leading to carcinogenesis, autoimmunity, neurodegeneration, and immunodeficiency (Thompson 1995; Hanahan and Weinberg 2000; Yuan and Yankner 2000; Li and Yuan 2008).Caspases are synthesized within the cell as inactive zymogens that lack significant protease activity. Thus, caspases are, in essence, regulated from the moment of protein synthesis in that they are not activated until receipt of specific death stimuli (Earnshaw et al. 1999). The primary structure of a caspase is an amino-terminal prodomain and a carboxy-terminal protease domain, which contains the key catalytic cysteine residue. Caspases are categorized as initiator or effector caspases, based on their position in apoptotic signaling cascades. The initiator caspases (caspase-2, -8, -9, and -10) act apically in cell death pathways and all share long, structurally similar prodomains. This group of enzymes is activated through “induced proximity” when adaptor proteins interact with the prodomains and promote caspase dimerization (Boatright et al. 2003; Baliga et al. 2004; Pop et al. 2006; Riedl and Salvesen 2007; Wachmann et al. 2010). In contrast, the effector caspases (caspase-3, -6, and -7) have shorter prodomains and exist in the cell as preformed, but inactive, homodimers. Following cleavage mediated by an initiator caspase, effector caspases act directly on specific cellular substrates to dismantle the cell. Although many individual caspase substrates have been implicated in specific aspects of cellular destruction (e.g., lamin cleavage is required for the efficient packaging of nuclei into small membrane-bound vesicles), recent proteomic approaches have greatly expanded the known repertoire of proteolytic products generated during apoptosis (Van Damme et al. 2005; Dix et al. 2008; Mahrus et al. 2008). Further work will be needed to confirm these findings and to determine how (or if) all of these substrates participate in the apoptotic process (see Poreba et al. 2013), especially as new details emerge on the relationship between posttranslational modifications, like phosphorylation, and caspase cleavage (Dix et al. 2012). 相似文献
10.
11.
The sixth and eighth steps of histidine biosynthesis are catalyzed by an imidazole glycerol-phosphate (IGP) dehydratase (EC 4.2.1.19) and by a histidinol-phosphate (HOL-P) phosphatase (EC 3.1.3.15), respectively. In the enterobacteria, in Campylobacter jejuni and in Xylella/Xanthomonas the two activities are associated with a single bifunctional polypeptide encoded by hisB. On the other hand, in Archaea, Eucarya, and most Bacteria the two activities are encoded by two separate genes. In this work we report a comparative analysis of the amino acid sequence of all the available HisB proteins, which allowed us to depict a likely evolutionary pathway leading to the present-day bifunctional hisB gene. According to the model that we propose, the bifunctional hisB gene is the result of a fusion event between two independent cistrons joined by domain-shuffling. The fusion event occurred recently in evolution, very likely in the proteobacterial lineage after the separation of the - and the -subdivisions. Data obtained in this work established that a paralogous duplication event of an ancestral DDDD phosphatase encoding gene originated both the HOL-P phosphatase moiety of the E. coli hisB gene and the gmhB gene coding for a DDDD phosphatase, which is involved in the biosynthesis of a precursor of the inner core of the outer membrane lipopolysaccharides (LPS). 相似文献
12.
Early Evolution of Immunoglobulin Genes 总被引:3,自引:0,他引:3
Considerable progress has been made in the characterizationof immunoglobulin genes from several lower vertebrate taxa.Isolation and identification of immunoglobulin genes in phylogeneticallyprimitive species is based predominantly on heterologous crosshybridization.The unit, clustered organization of heavy chain segmental elementsobserved in the germline of the horned shark (Hinds and Litman,1986) has also been found in another elasmobranch. Studies todetermine whether the clustered organization is universal throughoutthe entire cartilaginous fish assemblage are ongoing. In contrast,the ray-finned (bony)fishes appear to possess a mammalian-typeheavy chain gene organization. Additionally, immunoglobulingenes are being characterized in two relict fish species whoseexact systematic relationships are unknown. Isolation of putativeimmunoglobulin genes from the phylogenetically- ancient hagfishis being attempted using a PCR-based approach. Other ongoingor future research efforts involve characterization of lowervertebrate light chain genes, heavy chain isotype evolution,and the divergence of the immunoglobulins and T-cell antigenreceptors 相似文献
13.
Antennapedia (Antp)-class homeobox genes are involved in the determination of pattern formation along the anterior-posterior axis of the animal embryo. A phylogenetic analysis of Antp-class homeodomains of the nematode, Drosophila, amphioxus, mouse, and human indicates that the 13 cognate group genes of this gene family can be divided into two major groups, i.e., groups I and II. Group I genes can further be divided into subgroups A (cognate groups 1-2), B (cognate group 3), and C (cognate groups 4-8), and group II genes can be divided into subgroups D (cognate groups 9-10) and E (cognate groups 11-13), though this classification is somewhat ambiguous. Evolutionary distances among different amino acid sequences suggest that the divergence between group I and group II genes occurred ~1000 million years (MY) ago, and the five different subgroups were formed by ~600 MY ago, probably before the divergence of Pseudocoelomates (e.g., nematodes) and Coelomates (e.g., insects and chordates). Our results show that the genes that are phylogenetically close are also closely located in the chromosome, suggesting that the colinearity between the gene expression and gene arrangement was generated by successive tandem gene duplications and that the gene arrangement has been maintained by some sort of selection. 相似文献
14.
Erik Carboni Katherine Tschudi Jaewook Nam Xiuling Lu Anson W. K. Ma 《AAPS PharmSciTech》2014,15(3):762-771
“Margination” refers to the movement of particles in flow toward the walls of a channel. The term was first coined in physiology for describing the behavior of white blood cells (WBCs) and platelets in blood flow. The margination of particles is desirable for anticancer drug delivery because it results in the close proximity of drug-carrying particles to the endothelium, where they can easily diffuse into cancerous tumors through the leaky vasculature. Understanding the fundamentals of margination may further lead to the rational design of particles and allow for more specific delivery of anticancer drugs into tumors, thereby increasing patient comfort during cancer treatment. This paper reviews existing theoretical and experimental studies that focus on understanding margination. Margination is a complex phenomenon that depends on the interplay between inertial, hydrodynamic, electrostatic, lift, van der Waals, and Brownian forces. Parameters that have been explored thus far include the particle size, shape, density, stiffness, shear rate, and the concentration and aggregation state of red blood cells (RBCs). Many studies suggested that there exists an optimal particle size for margination to occur, and that nonspherical particles tend to marginate better than spherical particles. There are, however, conflicting views on the effects of particle density, stiffness, shear rate, and RBCs. The limitations of using the adhesion of particles to the channel walls in order to quantify margination propensity are explained, and some outstanding questions for future research are highlighted. 相似文献
15.
Nawal?K. Khadka Xiaolin Cheng Chian?Sing Ho John Katsaras Jianjun Pan 《Biophysical journal》2015,108(10):2492-2501
Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption band’s magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer area compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM. 相似文献
16.
17.
18.
19.
Saad M. Alshahrani Abdullah S. Alshetaili Ahmed Alalaiwe Bader B. Alsulays Md. Khalid Anwer Ramadan Al-Shdefat Faisal Imam Faiyaz Shakeel 《AAPS PharmSciTech》2018,19(1):123-133
Sunitinib malate (SM) is reported as a weakly soluble drug in water due to its poor dissolution rate and oral bioavailability. Hence, in the current study, various “self-nanoemulsifying drug delivery systems (SNEDDS)” of SM were prepared, characterized and evaluated for the enhancement of its in vitro dissolution rate and anticancer efficacy. On the basis of solubilization potential of SM in various excipients, “Lauroglycol-90 (oil), Triton-X100 (surfactant) and Transcutol-P (cosurfactant)” were selected for the preparation of SM SNEDDS. SM-loaded SNEDDS were developed by spontaneous emulsification method, characterized and evaluated for “thermodynamic stability, self-nanoemulsification efficiency, droplet size, polydispersity index (PDI), zeta potential (ZP), surface morphology, refractive index (RI), the percent of transmittance (% T) and drug release profile.” In vitro dissolution rate of SM was significantly enhanced from an optimized SNEDDS in comparison with SM suspension. The optimized SNEDDS of SM with droplet size of 42.3 nm, PDI value of 0.174, ZP value of ?36.4 mV, RI value of 1.339, % T value of 97.3%, and drug release profile of 95.4% (after 24 h via dialysis membrane) was selected for in vitro anticancer efficacy in human colon cancer cells (HT-29) by MTT assay. MTT assay indicated significant anticancer efficacy of optimized SM SNEDDS against HT-29 cells in comparison with free SM. The results of this study showed the great potential of SNEDDS in the enhancement of in vitro dissolution rate and anticancer efficacy of poorly soluble drug such as SM. 相似文献