首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Mutations in RPGRIP1L result in severe human diseases called ciliopathies. To unravel the molecular function of RPGRIP1L, we analyzed Rpgrip1l−/− mouse embryos, which display a ciliopathy phenotype and die, at the latest, around birth. In these embryos, cilia-mediated signaling was severely disturbed. Defects in Shh signaling suggested that the Rpgrip1l deficiency causes an impairment of protein degradation and protein processing. Indeed, we detected a cilia-dependent decreased proteasomal activity in the absence of Rpgrip1l. We found different proteasomal components localized to cilia and identified Psmd2, a component of the regulatory proteasomal 19S subunit, as an interaction partner for Rpgrip1l. Quantifications of proteasomal substrates demonstrated that Rpgrip1l regulates proteasomal activity specifically at the basal body. Our study suggests that Rpgrip1l controls ciliary signaling by regulating the activity of the ciliary proteasome via Psmd2.  相似文献   

2.
A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.  相似文献   

3.
Ciliopathies are life‐threatening human diseases caused by defective cilia. They can often be traced back to mutations of genes encoding transition zone (TZ) proteins demonstrating that the understanding of TZ organisation is of paramount importance. The TZ consists of multimeric protein modules that are subject to a stringent assembly hierarchy. Previous reports place Rpgrip1l at the top of the TZ assembly hierarchy in Caenorhabditis elegans. By performing quantitative immunofluorescence studies in RPGRIP1L?/? mouse embryos and human embryonic cells, we recognise a different situation in vertebrates in which Rpgrip1l deficiency affects TZ assembly in a cell type‐specific manner. In cell types in which the loss of Rpgrip1l alone does not affect all modules, additional truncation or removal of vertebrate‐specific Rpgrip1 results in an impairment of all modules. Consequently, Rpgrip1l and Rpgrip1 synergistically ensure the TZ composition in several vertebrate cell types, revealing a higher complexity of TZ assembly in vertebrates than in invertebrates.  相似文献   

4.
Penton A  Wodarz A  Nusse R 《Genetics》2002,161(2):747-762
Drosophila dishevelled (dsh) functions in two pathways: it is necessary to transduce Wingless (Wg) signaling and it is required in planar cell polarity. To learn more about how Dsh can discriminate between these functions, we performed genetic screens to isolate additional dsh alleles and we examined the potential role of protein phosphorylation by site-directed mutagenesis. We identified two alleles with point mutations in the Dsh DEP domain that specifically disrupt planar polarity signaling. When positioned in the structure of the DEP domain, these mutations are located close to each other and to a previously identified planar polarity mutation. In addition to the requirement for the DEP domain, we found that a cluster of potential phosphorylation sites in a binding domain for the protein kinase PAR-1 is also essential for planar polarity signaling. To identify regions of dsh that are necessary for Wg signaling, we screened for mutations that modified a GMR-GAL4;UAS-dsh overexpression phenotype in the eye. We recovered many alleles of the transgene containing missense mutations, including mutations in the DIX domain and in the DEP domain, the latter group mapping separately from the planar polarity mutations. In addition, several transgenes had mutations within a domain containing a consensus sequence for an SH3-binding protein. We also recovered second-site-suppressing mutations in axin, mapping at a region that may specifically interact with overexpressed Dsh.  相似文献   

5.
The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic overexpression experiments, we show that, similar to the requirements for prechordal plate mesendoderm fates, uninterrupted and high levels of Cyclops signalling are required for induction and specification of a complete ventral neural tube.  相似文献   

6.
7.
The seven-transmembrane protocadherin, Flamingo, functions in a number of processes during Drosophila development, including planar cell polarity (PCP). To assess the role(s) of Flamingo1/Celsr1 (Fmi1) during vertebrate embryogenesis we have exploited the zebrafish system, identifying two Fmi1 orthologues (zFmi1a and zFmi1b) and employing morpholinos to induce mis-splicing of zebrafish fmi1 mRNAs, to both imitate mutations identified in Drosophila flamingo and generate novel aberrant Flamingo proteins. We demonstrate that in the zebrafish gastrula, Fmi1 proteins function in concert with each other and with the vertebrate PCP proteins, Wnt11 and Strabismus, to mediate convergence and extension during gastrulation, without altering early dorso-ventral patterning. We show that zebrafish Fmi1a promotes extension of the entire antero-posterior axis of the zebrafish gastrula including prechordal plate and ventral diencephalic precursors. However, while we show that control over axial extension is autonomous, we find that Fmi1a is not required within lateral cells undergoing dorsal convergence.  相似文献   

8.
Although the unique organization of vertebrate cone mosaics was first described long ago,both their underlying molecular basis and physiological significance are largely unknown.Here,we demonstrate that Crumbs proteins,the key regulators of epithelial apical polarity,establish the planar cellular polarity of photoreceptors in zebrafish.Via heterophilic Crb2a-Crb2b interactions,the apicobasal polarity protein Crb2b restricts the asymmetric planar distribution of Crb2a in photoreceptors.The planar polarized Crumbs proteins thus balance intercellular adhesions and tension between photoreceptors,thereby stabilizing the geometric organization of cone mosaics.Notably,loss of Crb2b in zebrafish induces a nearsightedness-like phenotype in zebrafish accompanied by an elongated eye axis and impairs zebrafish visual perception for predation.These data reveal a detailed mechanism for cone mosaic homeostasis via previously undiscovered apical-planar polarity coordination and propose a pathogenic mechanism for nearsightedness.  相似文献   

9.
We identified two novel mouse mutants with abnormal head-shaking behavior and neural tube defects during the course of independent ENU mutagenesis experiments. The heterozygous and homozygous mutants exhibit defects in the orientation of sensory hair cells in the organ of Corti, indicating a defect in planar cell polarity. The homozygous mutants exhibit severe neural tube defects as a result of failure to initiate neural tube closure. We show that these mutants, spin cycle and crash, carry independent missense mutations within the coding region of Celsr1, encoding a large protocadherin molecule [1]. Celsr1 is one of three mammalian homologs of Drosophila flamingo/starry night, which is essential for the planar cell polarity pathway in Drosophila together with frizzled, dishevelled, prickle, strabismus/van gogh, and rhoA. The identification of mouse mutants of Celsr1 provides the first evidence for the function of the Celsr family in planar cell polarity in mammals and further supports the involvement of a planar cell polarity pathway in vertebrate neurulation.  相似文献   

10.
N Paricio  F Feiguin  M Boutros  S Eaton    M Mlodzik 《The EMBO journal》1999,18(17):4669-4678
The Drosophila misshapen (msn) gene is a member of the STE20 kinase family. We show that msn acts in the Frizzled (Fz) mediated epithelial planar polarity (EPP) signaling pathway in eyes and wings. Both msn loss- and gain-of-function result in defective ommatidial polarity and wing hair formation. Genetic and biochemical analyses indicate that msn acts downstream of fz and dishevelled (dsh) in the planar polarity pathway, and thus implicates an STE20-like kinase in Fz/Dsh-mediated signaling. This demonstrates that seven-pass transmembrane receptors can signal via members of the STE20 kinase family in higher eukaryotes. We also show that Msn acts in EPP signaling through the JNK (Jun-N-terminal kinase) module as it does in dorsal closure. Although at the level of Fz/Dsh there is no apparent redundancy in this pathway, the downstream effector JNK/MAPK (mitogen-activated protein kinase) module is redundant in planar polarity generation. To address the nature of this redundancy, we provide evidence for an involvement of the related MAP kinases of the p38 subfamily in planar polarity signaling downstream of Msn.  相似文献   

11.
The frizzled (fz) gene of Drosophila is required for planar polarity establishment in the adult cuticle, acting both cell autonomously and nonautonomously. We demonstrate that these two activities of fz in planar polarity are temporally separable in both the eye and wing. The nonautonomous function is dishevelled (dsh) independent, and its loss results in polarity phenotypes that resemble those seen for mutations in dachsous (ds). Genetic interactions and epistasis analysis suggest that fz, ds, and fat (ft) act together in the long-range propagation of polarity signals in the eye and wing. We also find evidence that polarity information may be propagated by modulation of the binding affinities of the cadherins encoded by the ds and ft loci.  相似文献   

12.
13.
Kim GH  Han JK 《The EMBO journal》2007,26(10):2513-2526
beta-Arrestin 2 (betaarr2) is a multifunctional protein that regulates numerous aspects of G-protein-coupled receptor function. However, its possible involvement in developmental processes is poorly understood. In this work, we examined the potential role of betaarr2 during Xenopus early development. Gain- and loss-of-function studies showed that Xenopus betaarr2 (xbetaarr2) is required for proper convergent extension (CE) movements, and normal cell polarization and intercalation without affecting cell fate. Moreover, for CE movements, betaarr2 acts as an essential regulator of dishevelled-mediated PCP (planar cell polarity) signaling, but not G-protein-mediated Ca(2+) signaling. Notably, xbetaarr2 is localized with the same distribution as the dishevelled protein, which is reasonable, as xbetaarr2 is required for dishevelled activation of RhoA. Furthermore, xbetaarr2 interacts with the N-terminal quarter of Daam1 and RhoA proteins, but not Rac1, and regulates RhoA activation through Daam1 activation for CE movements. We provide evidence that the endocytic activity of xbetaarr2 is essential for control of CE movements. Taken together, our results suggest that betaarr2 has a pivotal role in the regulation of Xenopus CE movements.  相似文献   

14.
During vertebrate gastrulation, convergence and extension cell movements are coordinated with the anteroposterior and mediolateral embryonic axes. Wnt planar cell polarity (Wnt/PCP) signaling polarizes the motile behaviors of cells with respect to the anteroposterior embryonic axis. Understanding how Wnt/PCP signaling mediates convergence and extension (C&E) movements requires analysis of the mechanisms employed to alter cell morphology and behavior with respect to embryonic polarity. Here, we examine the interactions between the microtubule cytoskeleton and Wnt/PCP signaling during zebrafish gastrulation. First, we assessed the location of the centrosome/microtubule organizing center (MTOC) relative to the cell nucleus and the body axes, as a marker of cell polarity. The intracellular position of MTOCs was polarized, perpendicular to the plane of the germ layers, independently of Wnt/PCP signaling. In addition, this position became biased posteriorly and medially within the plane of the germ layers at the transition from mid- to late gastrulation and from slow to fast C&E movements. This depends on intact Wnt/PCP signaling through Knypek (Glypican4/6) and Dishevelled components. Second, we tested whether microtubules are required for planar cell polarization. Once the planar cell polarity is established, microtubules are not required for accumulation of Prickle at the anterior cell edge. However, microtubules are needed for cell-cell contacts and initiation of its anterior localization. Reciprocal interactions occur between Wnt/PCP signaling and microtubule cytoskeleton during C&E gastrulation movements. Wnt/PCP signaling influences the polarity of the microtubule cytoskeleton and, conversely, microtubules are required for the asymmetric distribution of Wnt/PCP pathway components.  相似文献   

15.
Scratch-induced disruption of cultured monolayers induces polarity in front row cells that can be visualized by spatially localized polymerization of actin at the front of the cell and reorientation of the centrosome/Golgi to face the leading edge. We previously reported that centrosomal reorientation and microtubule polarization depend on a Cdc42-regulated signal transduction pathway involving activation of the Par6/aPKC complex followed by inhibition of GSK-3beta and accumulation of the adenomatous polyposis coli (APC) protein at the plus ends of leading-edge microtubules. Using monolayers of primary rodent embryo fibroblasts, we show here that dishevelled (Dvl) and axin, two major components of the Wnt signaling pathway are required for centrosome reorientation and that Wnt5a is required for activation of this pathway. We conclude that disruption of cell-cell contacts leads to the activation of a noncanonical Wnt/dishevelled signal transduction pathway that cooperates with Cdc42/Par6/aPKC to promote polarized reorganization of the microtubule cytoskeleton.  相似文献   

16.
Uroplakin (UP)3a is critical for urinary tract development and function; however, its role in these processes is unknown. We examined the function of the UP3a-like protein Upk3l, which was expressed at the apical surfaces of the epithelial cells that line the pronephric tubules (PTs) of the zebrafish pronephros. Embryos treated with upk3l-targeted morpholinos showed decreased pronephros function, which was attributed to defects in PT epithelial cell morphogenesis and polarization including: loss of an apical brush border and associated phospho-ERM proteins, apical redistribution of the basolateral Na(+)/K(+)-ATPase, and altered or diminished expression of the apical polarity complex proteins Prkcz (atypical protein kinase C zeta) and Pard3 (Par3). Upk3l missing its C-terminal cytoplasmic domain or containing mutations in conserved tyrosine or proline residues did not rescue, or only partially rescued the effects of Upk3l depletion. Our studies indicate that Upk3l promotes epithelial polarization and morphogenesis, likely by forming or stimulating interactions with cytoplasmic signaling or polarity proteins, and that defects in this process may underlie the pathology observed in UP3a knockout mice or patients with renal abnormalities that result from altered UP3a expression.  相似文献   

17.
Oriented cell divisions in the extending germband of Drosophila   总被引:1,自引:0,他引:1  
Tissue elongation is a general feature of morphogenesis. One example is the extension of the germband, which occurs during early embryogenesis in Drosophila. In the anterior part of the embryo, elongation follows from a process of cell intercalation. In this study, we follow cell behaviour at the posterior of the extending germband. We find that, in this region, cell divisions are mostly oriented longitudinally during the fast phase of elongation. Inhibiting cell divisions prevents longitudinal deformation of the posterior region and leads to an overall reduction in the rate and extent of elongation. Thus, as in zebrafish embryos, cell intercalation and oriented cell division together contribute to tissue elongation. We also show that the proportion of longitudinal divisions is reduced when segmental patterning is compromised, as, for example, in even skipped (eve) mutants. Because polarised cell intercalation at the anterior germband also requires segmental patterning, a common polarising cue might be used for both processes. Even though, in fish embryos, both mechanisms require the classical planar cell polarity (PCP) pathway, germband extension and oriented cell divisions proceed normally in embryos lacking dishevelled (dsh), a key component of the PCP pathway. An alternative means of planar polarisation must therefore be at work in the embryonic epidermis.  相似文献   

18.
19.
20.
The spinal cord of early zebrafish embryos contains a small number of neuronal classes whose growth cones all follow stereotyped, cell-specific pathways to their targets. Two classes of spinal neurons make cell-specific turns at or near the ventral midline of the spinal cord, which is occupied by a single row of midline floor plate cells. We tested whether these cells guide the growth cones by examining embryos missing the midline floor plate cells due either to laser ablation of the cells or to a mutation (cyc-1). In these embryos the growth cones followed both normal and aberrant pathways once near the ventral midline. This suggests that normally the midline floor plate cells do provide guidance cues, but that these cues are not obligatory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号