首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of γ-H2AX foci after DNA double strand breaks (DSBs) is crucial for the cellular response to this lethal DNA damage. We previously have shown that BRG1, a chromatin remodeling enzyme, facilitates DSB repair by stimulating γ-H2AX formation, and this function of BRG1 requires the binding of BRGI to acetylated histone H3 on γ-H2AX-containing nucleosomes using its bromodomain (BRD), a protein module that specifically recognizes acetyl-Lys moieties. We also have shown that the BRD of BRG1, when ectopically expressed in cells, functions as a dominant negative inhibitor of the BRG1 activity to stimulate γ-H2AX and DSB repair. Here, we found that BRDs from a select group of proteins have no such activity, suggesting that the γ-H2AX inhibition activity of BRG1 BRD is specific. This finding led us to search for more BRDs that exhibit γ-H2AX inhibition activity in the hope of finding additional BRD-containing proteins involved in DNA damage responses. We screened a total of 52 individual BRDs present in 38 human BRD-containing proteins, comprising 93% of all human BRDs. We identified the BRD of cat eye syndrome chromosome region candidate 2 (Cecr2), which recently was shown to form a novel chromatin remodeling complex with unknown cellular functions, as having a strong γ-H2AX inhibition activity. This activity of Cecr2 BRD is specific because it depends on the chromatin binding affinity of Cecr2 BRD. Small interfering RNA knockdown experiments showed that Cecr2 is important for γ-H2AX formation and DSB repair. Therefore, our genomewide screen identifies Cecr2 as a novel DNA damage response protein.  相似文献   

2.
3.

Background

Exposure of adherent cells to DNA damaging agents, such as the bacterial cytolethal distending toxin (CDT) or ionizing radiations (IR), activates the small GTPase RhoA, which promotes the formation of actin stress fibers and delays cell death. The signalling intermediates that regulate RhoA activation and promote cell survival are unknown.

Principal Findings

We demonstrate that the nuclear RhoA-specific Guanine nucleotide Exchange Factor (GEF) Net1 becomes dephosphorylated at a critical inhibitory site in cells exposed to CDT or IR. Expression of a dominant negative Net1 or Net1 knock down by iRNA prevented RhoA activation, inhibited the formation of stress fibers, and enhanced cell death, indicating that Net1 activation is required for this RhoA-mediated responses to genotoxic stress. The Net1 and RhoA-dependent signals involved activation of the Mitogen-Activated Protein Kinase p38 and its downstream target MAPK-activated protein kinase 2.

Significance

Our data highlight the importance of Net1 in controlling RhoA and p38 MAPK mediated cell survival in cells exposed to DNA damaging agents and illustrate a molecular pathway whereby chronic exposure to a bacterial toxin may promote genomic instability.  相似文献   

4.
Previous studies with the multidrug-resistant human HL60 cell line have shown a 3–4-fold decrease in VP-16 accumulation compared to the sensitive cell line, while the degree of resistance to VP-16 was 300-fold, indicating that other mechanisms of resistance are also operative. Since VP-16 has been shown to interfere with topoisomerase II activity, we have evaluated VP-16-dependent DNA strand break formation in the drug-sensitive and -resistant HL60 cells. Studies reported here show that the drug-resistant HL60 cells are extremely resistant to VP-16-dependent DNA cleavage compared to the sensitive cells. This decrease in DNA cleavage in the of VP-16 was, in part, related to a 2–3-fold decrease in both the amount and activity of topisomerase II in the resistant cell line compared to the sensitive cells. Nuclei from the resistant cell line were markedly more resistant to VP-16-dependent DNA cleavage than the WT cell nuclei. Interestingly, WT nuclei were found to be relatively more resistant to VP-16-induced DNA cleavage than the intact WT cells. Addition of WT cytosolic proteins to WT nuclei, however, significantly stimulated VP-16-dependent DNA cleavage and slightly increased DNA cleavage in resistant cell nuclei. In contrast, cytosolic proteins from the resistant cells had no effect on DNA cleavage in nuclei isolated from either cell line. These observations indicate that a decrease in the amount and activity of topoisomerase II in resistant HL60 cells translates into a decrease in VP-16-dependent DNA breakage and contributes to the resistance to VP-16. Furthermore, the cytosolic fraction from WT cells contains some factor, not present in the resistant cells, which is necessary for the maximal drug-induced DNA cleavage.  相似文献   

5.
6.
Previous studies with the multidrug-resistant human HL60 cell line have shown a 3-4-fold decrease in VP-16 accumulation compared to the sensitive cell line, while the degree of resistance to VP-16 was 300-fold, indicating that other mechanisms of resistance are also operative. Since VP-16 has been shown to interfere with topoisomerase II activity, we have evaluated VP-16-dependent DNA strand break formation in the drug-sensitive and -resistant HL60 cells. Studies reported here show that the drug-resistant HL60 cells are extremely resistant to VP-16-dependent DNA cleavage compared to the sensitive cells. This decrease in DNA cleavage activity in the presence of VP-16 was, in part, related to a 2-3-fold decrease in both the amount and activity of topoisomerase II in the resistant cell line compared to the sensitive cells. Nuclei from the resistant cell line were markedly more resistant to VP-16-dependent DNA cleavage than the WT cell nuclei. Interestingly, WT nuclei were found to be relatively more resistant to VP-16-induced DNA cleavage than the intact WT cells. Addition of WT cytosolic proteins to WT nuclei, however, significantly stimulated VP-16-dependent DNA cleavage and slightly increased DNA cleavage in resistant cell nuclei. In contrast, cytosolic proteins from the resistant cells had no effect on DNA cleavage in nuclei isolated from either cell line. These observations indicate that a decrease in the amount and activity of topoisomerase II in resistant HL60 cells translates into a decrease in VP-16-dependent DNA breakage and contributes to the resistance to VP-16. Furthermore, the cytosolic fraction from WT cells contains some factor, not present in the resistant cells, which is necessary for the maximal drug-induced DNA cleavage.  相似文献   

7.
Senescence is thought to be triggered by DNA damage, usually indirectly assessed as activation of the DNA damage response (DDR), but direct surveys of genetic damage are lacking. Here, we mitotically reactivate senescent human fibroblasts to evaluate their cytogenetic damage. We show that replicative senescence is generally characterized by telomeric fusions. However, both telomeric and extratelomeric aberrations are prevented by hTERT, indicating that even non‐telomeric damage descends from the lack of telomerase. Compared with replicative senescent cells, oncogene‐induced senescent fibroblasts display significantly higher levels of DNA damage, depicting how oncogene activation can catalyze the generation of further, potentially tumorigenic, genetic damage.  相似文献   

8.
Accurate chromosome segregation depends on proper assembly and function of the kinetochore and the mitotic spindle. In the budding yeast, Saccharomyces cerevisiae, the highly conserved protein kinase Mps1 has well-characterized roles in spindle pole body (SPB, yeast centrosome equivalent) duplication and the mitotic checkpoint. However, an additional role for Mps1 is suggested by phenotypes of MPS1 mutations that include genetic interactions with kinetochore mutations and meiotic chromosome segregation defects and also by the localization of Mps1 at the kinetochore, the latter being independent of checkpoint activation. We have developed a new MPS1 allele, mps1-as1, that renders the kinase specifically sensitive to a cell-permeable ATP analog inhibitor, allowing us to perform high-resolution execution point experiments that identify a novel role for Mps1 subsequent to SPB duplication. We demonstrate, by using both fixed- and live-cell fluoresence techniques, that cells lacking Mps1 function show severe defects in mitotic spindle formation, sister kinetochore positioning at metaphase, and chromosome segregation during anaphase. Taken together, our experiments are consistent with an important role for Mps1 at the kinetochore in mitotic spindle assembly and function.  相似文献   

9.
10.
In an effort to explore the possible causes of human radiosensitivity and identify more rapid assays for cellular radiosensitivity, we interrogated a set of assays that evaluate cellular functions involved in recognition and repair of DNA double-strand breaks: (1) neutral comet assay, (2) radiation-induced γ-H2AX focus formation, (3) the temporal kinetics of structural maintenance of chromosomes 1 phosphorylation, (4) intra-S-phase checkpoint integrity, and (5) mitochondrial respiration. We characterized a unique panel of 19 "radiosensitive" human lymphoblastoid cell lines from individuals with undiagnosed diseases suggestive of a DNA repair disorder. Radiosensitivity was defined by reduced cellular survival using a clonogenic survival assay. Each assay identified cell lines with defects in DNA damage response functions. The highest concordance rate observed, 89% (17/19), was between an abnormal neutral comet assay and reduced survival by the colony survival assay. Our data also suggested that the neutral comet assay would be a more rapid surrogate for analyzing DNA repair/processing disorders.  相似文献   

11.
Cullin 4 (Cul4)-based ubiquitin ligases emerged as critical regulators of DNA replication and repair. Over 50 Cul4-specific adaptors (DNA damage-binding 1 (Ddb1)-Cul4-associated factors; DCAFs) have been identified and are thought to assemble functionally distinct Cul4 complexes. Using a live-cell imaging-based RNAi screen, we analysed the function of DCAFs and Cul4-linked proteins, and identified specific subsets required for progression through G1 and S phase. We discovered C6orf167/Mms22-like protein (Mms22L) as a putative human orthologue of budding yeast Mms22, which, together with cullin Rtt101, regulates genome stability by promoting DNA replication through natural pause sites and damaged templates. Loss of Mms22L function in human cells results in S phase-dependent genomic instability characterised by spontaneous double-strand breaks and DNA damage checkpoint activation. Unlike yeast Mms22, human Mms22L does not stably bind to Cul4, but is degraded in a Cul4-dependent manner and upon replication stress. Mms22L physically and functionally interacts with the scaffold-like protein Nfkbil2 that co-purifies with histones, several chromatin remodelling and DNA replication/repair factors. Together, our results strongly suggest that the Mms22L-Nfkbil2 complex contributes to genome stability by regulating the chromatin state at stalled replication forks.  相似文献   

12.
Polo-like kinase-1 (Plk1) phosphorylates a number of mitotic substrates, but the diversity of Plk1-dependent processes suggests the existence of additional targets. Plk1 contains a specialized phosphoserine-threonine binding domain, the Polo-box domain (PBD), postulated to target the kinase to its substrates. Using the specialized PBD of Plk1 as an affinity capture agent, we performed a screen to define the mitotic Plk1-PBD interactome by mass spectrometry. We identified 622 proteins that showed phosphorylation-dependent mitosis-specific interactions, including proteins involved in well-established Plk1-regulated processes, and in processes not previously linked to Plk1 such as translational control, RNA processing, and vesicle transport. Many proteins identified in our screen play important roles in cytokinesis, where, in mammalian cells, the detailed mechanistic role of Plk1 remains poorly defined. We go on to characterize the mitosis-specific interaction of the Plk1-PBD with the cytokinesis effector kinase Rho-associated coiled-coil domain-containing protein kinase 2 (Rock2), demonstrate that Rock2 is a Plk1 substrate, and show that Rock2 colocalizes with Plk1 during cytokinesis. Finally, we show that Plk1 and RhoA function together to maximally enhance Rock2 kinase activity in vitro and within cells, and implicate Plk1 as a central regulator of multiple pathways that synergistically converge to regulate actomyosin ring contraction during cleavage furrow ingression.  相似文献   

13.
DNA damage response (DDR) is vital for genomic stability, and its deficiency is linked to tumorigenesis. Extensive studies in interphase (G(1)-S-G(2)) mammalian cells have revealed the mechanisms of DDR in great detail; however, how mitotic cells respond to DNA damage remains less defined. We report here that a full DDR is suppressed in mitotic mammalian cells until telophase/cytokinesis. Although early DDR markers such as the phosphorylations of ataxia telangiectasia mutated (ATM) and histone H2A.x (H2AX) can be readily detected, the ionizing radiation-induced foci (IRIF) formation of late DDR markers such as breast cancer type 1 susceptibility protein (BRCA1) and p53-binding protein 1 (53BP1) are absent until the telophase/cytokinesis stage. We further showed that the IR-induced ubiquitination cascade around DNA damage sites did not occur in mitotic cells, which explains, at least in part, why BRCA1 and 53BP1 cannot be recruited to the damaged sites. These observations indicate that DDR is suppressed in mitotic cells after the step of γH2AX formation. Not surprisingly, we found that the absence of a full DDR in mitotic cells was associated with the high cyclin-dependent kinase 1 (CDK1) activities. More 53BP1 IRIF could be detected when the irradiated mitotic cells were treated with a CDK1 inhibitor. Further, the activation of CDK5 in interphase cells impedes the formation of 53BP1 IRIF. Together, these results suggest that the DDR is suppressed by the high CDK1 activity in mitotic mammalian cells.  相似文献   

14.
The Replication Protein A (RPA) complex is an essential regulator of eukaryotic DNA metabolism. RPA avidly binds to single-stranded DNA (ssDNA) through multiple oligonucleotide/oligosaccharide-binding folds and coordinates the recruitment and exchange of genome maintenance factors to regulate DNA replication, recombination and repair. The RPA-ssDNA platform also constitutes a key physiological signal which activates the master ATR kinase to protect and repair stalled or collapsed replication forks during replication stress. In recent years, the RPA complex has emerged as a key target and an important regulator of post-translational modifications in response to DNA damage, which is critical for its genome guardian functions. Phosphorylation and SUMOylation of the RPA complex, and more recently RPA-regulated ubiquitination, have all been shown to control specific aspects of DNA damage signaling and repair by modulating the interactions between RPA and its partners. Here, we review our current understanding of the critical functions of the RPA-ssDNA platform in the maintenance of genome stability and its regulation through an elaborate network of covalent modifications.  相似文献   

15.
16.
《Molecular cell》2022,82(19):3538-3552.e5
  1. Download : Download high-res image (194KB)
  2. Download : Download full-size image
  相似文献   

17.
The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation.  相似文献   

18.
Protein phosphatase PP4C has been implicated in the DNA damage response (DDR), but its substrates in DDR remain largely unknown. We devised a novel proteomic strategy for systematic identification of proteins dephosphorylated by PP4C and identified KRAB-domain-associated protein 1 (KAP-1) as a substrate. Ionizing radiation leads to phosphorylation of KAP-1 at S824 (via ATM) and at S473 (via CHK2). A PP4C/R3β complex interacts with KAP-1 and silencing this complex leads to persistence of phospho-S824 and phospho-S473. We identify a new role for KAP-1 in DDR by showing that phosphorylation of S473 impacts the G2/M checkpoint. Depletion of PP4R3β or expression of the phosphomimetic KAP-1 S473 mutant (S473D) leads to a prolonged G2/M checkpoint. Phosphorylation of S824 is necessary for repair of heterochromatic DNA lesions and similar to cells expressing phosphomimetic KAP-1 S824 mutant (S824D), or PP4R3β-silenced cells, display prolonged relaxation of chromatin with release of chromatin remodelling protein CHD3. Our results define a new role for PP4-mediated dephosphorylation in the DDR, including the regulation of a previously undescribed function of KAP-1 in checkpoint response.  相似文献   

19.
Fanconi anaemia (FA) and Nijmegen breakage syndrome (NBS) are autosomal recessive chromosome instability syndromes with distinct clinical phenotypes. Cells from individuals affected with FA are hypersensitive to mitomycin C (MMC), and cells from those with NBS are hypersensitive to ionizing radiation. Here we report that both NBS cell lines and individuals with NBS are hypersensitive to MMC, indicating that there may be functional linkage between FA and NBS. In wild-type cells, MMC activates the colocalization of the FA subtype D2 protein (FANCD2) and NBS1 protein in subnuclear foci. Ionizing radiation activates the ataxia telangiectasia kinase (ATM)-dependent and NBS1-dependent phosphorylation of FANCD2, resulting in an S-phase checkpoint. NBS1 and FANCD2 therefore cooperate in two distinct cellular functions, one involved in the DNA crosslink response and one involved in the S-phase checkpoint response.  相似文献   

20.
Prolylcarboxypeptidase (PRCP) is a serine protease that catalyzes the cleavage of C‐terminal amino acids linked to proline in peptides. It is ubiquitously expressed and is involved in regulating blood pressure, proliferation, inflammation, angiogenesis, and weight maintenance. To identify the candidate proximal target engagement markers for PRCP inhibition in the central nervous system, we profiled the peptidome of human cerebrospinal fluid to look for PRCP substrates using a MS‐based in vitro substrate profiling assay. These experiments identified a single peptide, with the sequence YPRPIHPA, as a novel substrate for PRCP in human cerebrospinal fluid. The peptide YPRPIHPA is from the extracellular portion of human endothelin B receptor‐like protein 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号