首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ultrastructural, morphometric and physiological techniques were used to determine the consistent chloroplast differences between triazine-resistant (R) and triazine-susceptible (S) biotypes of Amaranthus hybridus L., Chenopodium album L., and Brassica campestris L. All R biotypes had a larger proportion of the chloroplast volume as grana lamellae and a lower proportion of starch and stroma lamellae than S biotypes. In the R biotypes, a greater percentage of grana contain larger numbers of thylakoids per granum. A greater proportion of chlorophyll associated with the light-harvesting chlorophyll alb protein and a lower chlorophyll alb ratio, traits associated with an increase in grana lamellae, were noted in R biotypes. Chloroplasts of S biotypes could be modified to ultrastructural phenocopies of those in R biotypes by treatment with sublethal levels of the PSII inhibiting herbicides, bentazon, diuron, atrazine and prometon. Despite the structural similarities to R biotypes, the modified S biotypes were not resistant to atrazine as determined by fluorescence measurements. Thus, the structural alterations observed are apparently secondary effects of impaired photosynthetic electron transport in R biotypes, and are not the cause of triazine resistance.  相似文献   

3.
4.
Rapid detoxification of atrazine in naturally tolerant crops such as maize (Zea mays) and grain sorghum (Sorghum bicolor) results from glutathione S‐transferase (GST) activity. In previous research, two atrazine‐resistant waterhemp (Amaranthus tuberculatus) populations from Illinois, U.S.A. (designated ACR and MCR), displayed rapid formation of atrazine‐glutathione (GSH) conjugates, implicating elevated rates of metabolism as the resistance mechanism. Our main objective was to utilize protein purification combined with qualitative proteomics to investigate the hypothesis that enhanced atrazine detoxification, catalysed by distinct GSTs, confers resistance in ACR and MCR. Additionally, candidate AtuGST expression was analysed in an F2 population segregating for atrazine resistance. ACR and MCR showed higher specific activities towards atrazine in partially purified ammonium sulphate and GSH affinity‐purified fractions compared to an atrazine‐sensitive population (WCS). One‐dimensional electrophoresis of these fractions displayed an approximate 26‐kDa band, typical of GST subunits. Several phi‐ and tau‐class GSTs were identified by LC‐MS/MS from each population, based on peptide similarity with GSTs from Arabidopsis. Elevated constitutive expression of one phi‐class GST, named AtuGSTF2, correlated strongly with atrazine resistance in ACR and MCR and segregating F2 population. These results indicate that AtuGSTF2 may be linked to a metabolic mechanism that confers atrazine resistance in ACR and MCR.  相似文献   

5.
Agricultural weeds frequently hybridize with each other or with related crop species. Some hybrid weeds exhibit heterosis (hybrid vigor), which may be stabilized through mechanisms like genome duplication or vegetative reproduction. Even when heterosis is not stabilized, hybridization events diversify weed gene pools and often enable adaptive introgression. Consequently, hybridization may promote weed evolution and exacerbate weed–crop competition. However, hybridization does not always increase weediness. Even when viable and fertile, hybrid weeds sometimes prove unsuccessful in crop fields. This review provides an overview of weed hybridization and its management implications. We describe intrinsic and extrinsic factors that influence hybrid fitness in agroecosystems. We also survey the rapidly growing literature on crop–weed hybridization and the link between hybridization and invasiveness. These topics are increasingly relevant in this era of genetic tools for crop improvement, intensive and simplified cropping systems, and globalized trade. The review concludes with suggested research priorities, including hybridization in the context of climate change, plant–insect interactions, and redesigned weed management programs. From a weed management perspective, hybridization is one of many reasons that researchers and land managers must diversify their weed control toolkits.  相似文献   

6.
Fluazinam is a new active ingredient for the control of grey mould, belonging to the novel broad spectum phenylpyridinamine fungicides. The effect of fluazinam was studied on one wild type and four strains of Botrytis cinerea , which had been isolated from vegetable crops in Greece, and were resistant to benzimidazoles and/or dicarboximides and to the mixture of benzimidazoles (carbendazim) + phenylcarbamates (diethofencarb). In vitro fluazinam was found to be highly active against strains of B. cinerea which were sensitive or resistant to benzimidazoles or exhibited multiple resistance to benzimidazoles, dicarboximides and to the mixture carbendazim + diethofencarb [EC50 and EC95 values (concentration of active ingredient that suppresses mycelial growth to 50 and 95%, respectively, of that of the fungus on fungicide-free agar medium) calculated with probit analysis, ranged from 0.044 to 0.069 and 0.58 to 1.6 μg/ml, respectively]. No cross-resistance was observed between fluazinam and the market products benomyl, iprodione or carbendazim + diethofencarb. Preventive applications of fluazinam in vivo completely inhibited infections of cucumber seedlings by all the above-mentioned resistant strains of B. cinerea . Benomyl and iprodione did not effectively control the benzimidazole- and dicarboximide-resistant strains. The mixture of carbendazim + diethofencarb insufficiently controlled the strain of B. cinerea with moderate resistance to benzimidazoles. The results of this investigation indicate that it should be possible to use fluazinam as an alternative in resistance management programmes against grey mould.  相似文献   

7.
Abstract  Several genes on chromosomes IV and VI have a significant influence on high-level resistance to diflubenzuron in a strain of the Australian sheep blowfly from Tara, Queensland. Low-level resistance to cyromazine in the same strain is due to genes on these chromosomes with a gene (gene complex) in the sv marker region of chromosome IV being particularly important. For both insecticides, genetic background influences resistance status. If the results of the Tara strain prove typical for those of other populations, resistance to diflubenzuron in the Australian sheep blowfly has potentially significant consequences for woolgrowers.  相似文献   

8.
Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.  相似文献   

9.
Both weed science and plant invasion science deal with noxious plants. Yet, they have historically developed as two distinct research areas in Europe, with different target species, approaches and management aims, as well as with diverging institutions and researchers involved. We argue that the strengths of these two disciplines can be highly complementary in implementing management strategies and outline how synergies were created in an international, multidisciplinary project to develop efficient and sustainable management of common ragweed, Ambrosia artemisiifolia. Because this species has severe impacts on human health and is also a crop weed in large parts of Europe, common ragweed is one of the economically most important plant invaders in Europe. Our multidisciplinary approach combining expertise from weed science and plant invasion science allowed us (i) to develop a comprehensive plant demographic model to evaluate and compare management tools, such as optimal cutting regimes and biological control for different regions and habitat types, and (ii) to assess benefits and risks of biological control. It further (iii) showed ways to reconcile different stakeholder interests and management objectives (health versus crop yield), and (iv) led to an economic model to assess invader impact across actors and domains, and effectiveness of control measures. (v) It also led to design and implement management strategies in collaboration with the various stakeholder groups affected by noxious weeds, created training opportunities for early stage researchers in the sustainable management of noxious plants, and actively promoted improved decision making regarding the use of exotic biocontrol agents at the national and European level. We critically discuss our achievements and limitations, and list and discuss other potential Old World (Afro-Eurasian) target species that could benefit from applying such an integrative approach, as typical invasive alien plants are increasingly reported from crop fields and native crop weeds are invading adjacent non-crop land, thereby forming new source populations for further spread.  相似文献   

10.
Rice is major crop in India and its cultivation in northwest India started 25 to 30 years ago in assured irrigation areas during the summer rainy season. In this region, rice-wheat rotation became most popular owing to its high yields; however, these crops are highly infested by the weeds, thus farmers use herbicides for their control. Hence, this rotation consumes a maximum quantity of herbicides in this region, which has resulted in several problems (environmental pollution, human health hazards, development of herbicide resistance in weeds). Thus, serious ecological questions about the reliance on herbicides for weed control in this rotation have been raised. One of the alternatives to overcome these problems is with the use of allelopathic strategies, including the use of weed-smothering crops for weed management and for the sustainability of agriculture. The field, pot culture, and laboratory studies have shown that inclusion of weed-smothering crops in rotation considerably reduced the weed population in the current and succeeding crops. Early summer (April-June) fodder crops of sorghum, pearlmillet and maize drastically smothered the weed population and biomass. The residual suppression effect of peralmillet also persisted in the next crop up to 45 days. Thus, it is conceptualized that the inclusion of such summer fodder crops before the rice crop in the rice-wheat rotation may provide satisfactory weed control in the succeeding rice crop and may minimize the use of herbicides. Likewise, the replacement of wheat by winter fodder crops of oat and berseem (Trifolium alexandrinum) may also help in the control of winter weeds. Hence, further studies in this direction may provide satisfactory weed management in rice-wheat rotation and may minimize the use of herbicides and thereby help indeveloping sustainable agricultural practices.  相似文献   

11.
Environmental weeds are plants that invade natural ecosystems and are considered to be a serious threat to nature conservation. Australia and New Zealand, where biota with a high degree of endemism have evolved, are particularly susceptible to environmental weeds. Environmental weeds have been implicated in the extinction of several indigenous plant species, and they also threaten ecosystem stability and functional complexity. Historically, emphasis has been placed on the chemical or manual ‘control’ of weed infestations, often with little consideration of the long‐term effectiveness or the ecological consequences of such an approach. As the threat from environmental weeds is becoming more fully recognized, an integrated, strategic and ecological approach to weed management is being recommended. In both countries, systems for screening new plants before allowing entry for cultivation have been developed. For already established plants, management is conducted within a legislative and policy framework such as the Regional Pest Management Strategies that operate through the Biosecurity Act 1993 in New Zealand. Noxious weed legislation in Australia has historically focused on agricultural weeds, but some Acts are (or have recently been) undergoing revision to give greater emphasis to environmental weeds and the involvement of the community in weed management. Quarantine, legislation, research and on‐ground management are complemented by education programmes about the impact and control of environmental weeds. This paper provides an overview of the ‘tool‐kit’ needed to manage environmental weeds in Australia and New Zealand, comparing and contrasting the approaches taken in the two countries. It also provides a broad framework for the case studies that make up this special issue on the ecology and management of environmental weeds in both countries.  相似文献   

12.
Habitat diversification can influence the interactions of insects with plants and this can be used in agroecosystems for the management of pest populations. Plant diversification can be achieved through planting crops, such as trap crops, or by adjusting weed management. Aster leafhopper, Macrosteles quadrilineatus Forbes (Hemiptera: Cicadellidae), is a polyphagous species that uses cereals, vegetables, and weeds as host plants. The influence of weeds on M. quadrilineatus abundance was investigated experimentally in carrot [Daucus carota L. cv. Canada (Apiaceae)] field plots by adjusting the level of management of two groups of weeds (broadleaf and grass) and by comparing it to weed‐free plots. The preference of M. quadrilineatus for different cereal and weed species relative to carrots was tested in choice test assays. Habitat context influenced the abundance of M. quadrilineatus in the field experiments. The presence of border crops such as oat, rye, barley, wheat, and triticale did not significantly attract or repel this insect to carrot plots compared to the no‐border treatment. However, spelt‐bordered plots had 42% fewer M. quadrilineatus than three treatments, triticale, wheat, and barley, that had the highest insect abundance. The type of weed management affected M. quadrilineatus abundance in carrot plots, but not the frequency of herbicide application. Plots that had carrot growing with broadleaf‐weeds had about 59% fewer M. quadrilineatus compared with those growing with crabgrass or carrot alone. In the greenhouse choice tests, grasses (e.g., cereals) attracted and broadleaf‐weeds repelled M. quadrilineatus relative to carrots. In summary, carrot growers may be able to manage this pest by reducing the interaction of cereal cover crops with carrots and eliminating grassy weeds in commercial production fields.  相似文献   

13.
Tandem constructs to mitigate transgene persistence: tobacco as a model   总被引:2,自引:0,他引:2  
Some transgenic crops can introgress genes into other varieties of the crop, to related weeds or themselves remain as 'volunteer' weeds, potentially enhancing the invasiveness or weediness of the resulting offspring. The presently suggested mechanisms for transgene containment allow low frequency of gene release (leakage), requiring the mitigation of continued spread. Transgenic mitigation (TM), where a desired primary gene is tandemly coupled with mitigating genes that are positive or neutral to the crop but deleterious to hybrids and their progeny, was tested as a mechanism to mitigate transgene introgression. Dwarfism, which typically increases crop yield while decreasing the ability to compete, was used as a mitigator. A construct of a dominant ahasR (acetohydroxy acid synthase) gene conferring herbicide resistance in tandem with the semidominant mitigator dwarfing Delta gai (gibberellic acid-insensitive) gene was transformed into tobacco (Nicotiana tabacum). The integration and the phenotypic stability of the tandemly linked ahasR and Delta gai genomic inserts in later generations were confirmed by polymerase chain reaction. The hemizygous semidwarf imazapyr-resistant TM T1 (= BC1) transgenic plants were weak competitors when cocultivated with wild type segregants under greenhouse conditions and without using the herbicide. The competition was most intense at close spacings typical of weed offspring. Most dwarf plants interspersed with wild type died at 1-cm, > 70% at 2.5-cm and 45% at 5-cm spacing, and the dwarf survivors formed no flowers. At 10-cm spacing, where few TM plants died, only those TM plants growing at the periphery of the large cultivation containers formed flowers, after the wild type plants terminated growth. The highest reproductive TM fitness relative to the wild type was 17%. The results demonstrate the suppression of crop-weed hybrids when competing with wild type weeds, or such crops as volunteer weeds, in seasons when the selector (herbicide) is not used. The linked unfitness would be continuously manifested in future generations, keeping the transgene at a low frequency.  相似文献   

14.
The molecular basis of an acetyl-CoA carboxylase (ACCase) target-based resistant Lolium rigidum population (WLR 96) was studied here. The carboxyl-transferase domain of the plastidic ACCase gene from resistant individuals was amplified by PCR and sequenced. The DNA sequences were aligned and compared with a susceptible population. Six amino acid substitutions were identified in the resistant population. The substitution Ile-2041-Asn, known to confer resistance to ACCase-inhibiting herbicides aryloxyphenoxypropionate (APP) in Alopecurus myosuroides, was identified in most resistant plants but it is always linked with other amino acid substitutions. This was confirmed by a cleaved amplified polymorphism (CAP) marker and an allele-specific PCR. The sole amino acid substitution Ile-2041-Asn was not found in this population. It is likely this mutation evolved later among individuals already possessing the other substitutions. Three haplotypes were identified from the resistant population based on the six amino acid combinations, and two are linked with herbicide resistance in this population. The multiple amino acid substitutions including the Ile-2041-Asn form the molecular basis endowing a high degree of resistance to ACCase-inhibiting herbicides in this L. rigidum population.  相似文献   

15.
An integrated approach to management in epidemiology and pest control   总被引:2,自引:0,他引:2  
Management of biological systems involves the application of ecological and evolutionary principles within a decision theory framework. In the present review, we focus on epidemiology and pest (insect and plant) control. By studying their similarities and differences, it is possible to outline a broad conceptual background for the antagonistic interactions involved, and hence to begin to develop a classification system of predictive value in management situations. In particular, we address issues of scale in space and time, and relate these to contrasting practical problems associated with deploying biocontrol agents and disease control. Additionally, we discuss three areas where an integrated approach to natural enemies, using ecological and evolutionary insights, and decision theory have much to offer: (i) management and resistance, (ii) the problems of emerging diseases, and (iii) the links between disease and behaviour.  相似文献   

16.
Transgenic potatoes containing the marker genes NTP II and GUS were planted in the field and at varying distances (0–1, 1–2, 2–3, 10, 100 and 11000 m) from them were patches of untransformed potatoes of another variety. All seeds produced by the untransformed potatoes were collected after the flowering season and screened for the presence of the marker genes. Gene dispersal was found to be highest in the immediate vicinity (72%). At the consecutive distances the presence of the gene was more or less constant (35%). Thus gene dispersal occurred both over large distances and to a higher extent than has been previously shown. Pollinator availability, as well as the foraging behaviour of the pollinators, are suggested to be important in this study. The plant material used is discussed in the light of sexually selected traits which could have contributed to the high gene dispersal.  相似文献   

17.
Host resistance to parasites can come in two main forms: hosts may either reduce the probability of parasite infection (anti-infection resistance) or reduce parasite growth after infection has occurred (anti-growth resistance). Both resistance mechanisms are often imperfect, meaning that they do not fully prevent or clear infections. Theoretical work has suggested that imperfect anti-growth resistance can select for higher parasite virulence by favouring faster-growing and more virulent parasites that overcome this resistance. In contrast, imperfect anti-infection resistance is thought not to select for increased parasite virulence, because it is assumed that it reduces the number of hosts that become infected, but not the fitness of parasites in successfully infected hosts. Here, we develop a theoretical model to show that anti-infection resistance can in fact select for higher virulence when such resistance reduces the effective parasite dose that enters a host. Our model is based on a monarch butterfly-parasite system in which larval food plants confer resistance to the monarch host. We carried out an experiment and showed that this environmental resistance is most likely a form of anti-infection resistance, through which toxic food plants reduce the effective dose of parasites that initiates an infection. We used these results to build a mathematical model to investigate the evolutionary consequences of food plant-induced resistance. Our model shows that when the effective infectious dose is reduced, parasites can compensate by evolving a higher per-parasite growth rate, and consequently a higher intrinsic virulence. Our results are relevant to many insect host-parasite systems, in which larval food plants often confer imperfect anti-infection resistance. Our results also suggest that - for parasites where the infectious dose affects the within-host dynamics - vaccines that reduce the effective infectious dose can select for increased parasite virulence.  相似文献   

18.
Fertilization reduction could be a useful pest management tactic for floriculture crops if it reduced pest populations with minimal impact on crop yield and quality. We evaluated the response of the western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), to different fertilization levels for cut roses, Rosa hybrida L. cv. ‘Tropicana’, and quantified fertilization effects on (i) abundance of F. occidentalis on cut roses, (ii) biological control of F. occidentalis on cut roses and (iii) nutritional quality of the cut flower crop. We tested a commercially available fertilizer (Peters Excel 15‐5‐15 Cal‐Mag; The Scotts Company, Marysville, OH) at 100% and 33% of the recommended nitrogen level (150 ppm N) for rose production using liquid‐feeding and two control measures: no thrips control measure; release of a predatory mite, Amblyseius swirskii (Athias‐Henriot). To maintain equivalent ratios of macro‐ and micronutrients for all our fertilizer treatments, we varied only the concentration of the fertilizer to the levels specified in our experiments. Lowering fertilization rate from 100% to 33% of the recommended level reduced mean F. occidentalis abundance on cut roses by 30%. Combinations of both bottom‐up (fertilization) and top‐down (biological control) tactics provided better F. occidentalis control than either tactic alone. Flower production was not compromised on plants fertilized with 33% of the recommended level. Nitrogen, phosphorous and potassium content of the leaf tissue decreased at 33% of the recommended fertilization level, but all values were within optimal ranges for cut roses. We propose that fertility management may be an effective means of reducing thrips numbers on cut roses.  相似文献   

19.
Given that individuals are genetically heterogeneous in their degree of resistance to infection, a model is proposed to formulate appropriate choices that will limit the spread of an infectious disease. The model is illustrated with data on S. aureus mastitis and is based on parameters characterizing the spread of the disease (contact rate, probability of infection after contact, and rate of recovery after infection), the demography (replacement and culling rates) and the genetic composition (degree of relationship and heritability of the disease trait) of the animal population. To decrease infection pressure, it is possible to apply non-genetic procedures that increase the culling (e.g., culling of chronically infected cows) and recovery (e.g., antibiotic therapy) rates of infected cows. But the contribution of the paper is to show that genetic management of infectious disease is also theoretically possible as a control measure complementary to non-genetic actions. Indeed, the probability for an uninfected individual to become infected after contact with an infected one is partially related to their degree of kinship: the more closely they are related, the more likely they are to share identical genes like those associated to the non-resistance to infection. Different prospective genetic management procedures are proposed to decrease the contact rate between infected and uninfected relatives and keep the number of secondary cases generated by one infected animal below 1.  相似文献   

20.
胡阳  傅强 《昆虫学报》2009,52(6):691-698
目前, 抗虫转基因作物的抗性管理方法主要是高剂量/庇护所策略。该策略的有效性取决于3个基本的假设条件:(1)抗虫转基因作物(Bt作物)表达出高剂量的杀虫蛋白, 该剂量使得靶标害虫对Bt杀虫蛋白的抗性表现型为功能性完全隐性或近于完全隐性, 进而使得Bt作物可以杀死几乎所有的抗性杂合个体和所有的敏感性个体;(2)靶标害虫种群的Bt抗性基因起始频率处于很低的水平;(3)源自转基因作物田和非转基因作物田(庇护所)的成虫在田间随机混合并交配。这3个假设必须同时满足, 缺一不可。本文就这3个假设的理论基础和经验研究的进展进行了综合论述, 并着重讨论了随机交配假设的最新研究进展以及今后的研究方向和方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号