首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The origin recognition complex (ORC), a possible initiator of chromosomal DNA replication in eukaryotes, binds to ATP through its subunits Orc1p and Orc5p. Orc1p possesses ATPase activity. As for DnaA, the Escherichia coli initiator, the ATP-DnaA complex is active but the ADP-DnaA complex is inactive for DNA replication and, therefore, the ATPase activity of DnaA inactivates the ATP-DnaA complex to suppress the re-initiation of chromosomal DNA replication. We investigated ADP-binding to ORC by a filter-binding assay. The K(d) values for ADP-binding to wild-type ORC and to ORC-1A (ORC containing Orc1p with a defective Walker A motif) were less than 10nM, showing that Orc5p can bind to ADP with a high affinity, similar to ATP. ORC-5A (ORC containing Orc5p with a defective Walker A motif) did not bind to ADP, suggesting that the ADP-Orc1p complex is too unstable to be detected by the filter-binding assay. ADP dissociated more rapidly than ATP from wild-type ORC and ORC-1A. Origin DNA fragments did not stimulate ADP-binding to any type of ORC. In the presence of ADP, ORC could not bind to origin DNA in a sequence-specific manner. Thus, in eukaryotes, the ADP-ORC complex may be unable to initiate chromosomal DNA replication, and in this it resembles the ADP-DnaA complex in prokaryotes. However, overall control may be different. In eukaryotes, the ADP-ORC complex is unstable, suggesting that the ADP-ORC complex might rapidly become an ATP-ORC complex; whereas in prokaryotes, ADP remains bound to DnaA, keeping DnaA inactive, and preventing re-initiation for some periods.  相似文献   

2.
The ATP-bound DnaA protein opens duplex DNA at the Escherichia coli origin of replication, leading to a series of initiation reactions in vitro. When loaded on DNA, the DNA polymerase III sliding clamp stimulates hydrolysis of DnaA-bound ATP in the presence of the IdaB/Hda protein, thereby yielding ADP-DnaA, which is inactive for initiation in vitro. This negative feedback regulation of DnaA activity is proposed to play a crucial role in the replication cycle. We here report that the mutant protein DnaA R334A is inert to hydrolysis of bound ATP, although its affinities for ATP and ADP remain unaffected. The ATP-bound DnaA R334A protein, but not the ADP form, initiates minichromosomal replication in vitro at a level similar to that seen for wild-type DnaA. When expressed at moderate levels in vivo, DnaA R334A is predominantly in the ATP-bound form, unlike the wild-type and DnaA E204Q proteins, which in vitro hydrolyze ATP in a sliding clamp- and IdaB/Hda-dependent manner. Furthermore, DnaA R334A, but not the wild-type or the DnaA E204Q proteins, promotes overinitiation of chromosomal replication. These in vivo data support a crucial role for bound nucleotides in regulating the activity of DnaA during replication. Based on a homology modeling analysis, we suggest that the Arg-334 residue closely interacts with bound nucleotides.  相似文献   

3.
P Hughes  A Landoulsi  M Kohiyama 《Cell》1988,55(2):343-350
DnaA protein interacts with cAMP with a KD of 1 microM. This interaction stimulates DnaA protein binding to the chromosome replication origin (oriC) and the mioC promoter region, protects DnaA protein from thermal inactivation, releases ADP but not ATP bound to DnaA protein, and restores normal DNA replication activity and ATPase activity in inactive ADP-DnaA protein preparations. A model is proposed in which cellular cAMP levels govern the replication activity of DnaA protein by promoting the recycling of the inactive ADP-DnaA protein form into the active ATP form.  相似文献   

4.
The DnaA protein specifically binds to the origin of chromosomal DNA replication and initiates DNA synthesis. In addition to this sequence-specific DNA binding, DnaA protein binds to DNA in a sequence-independent manner. We here compared the two DNA binding activities. Binding of ATP and ADP to DnaA inhibited the sequence-independent DNA binding, but not sequence-specific binding. Sequence-independent DNA binding, but not sequence-specific binding, required incubation at high temperatures. Mutations in the C-terminal domain affected the sequence-independent DNA binding activity less drastically than they did the sequence-specific binding. On the other hand, the mutant DnaA433, which has mutations in a membrane-binding domain (K327 to I344) was inert for sequence-independent binding, but could bind specifically to DNA. These results suggest that the two DNA binding activities involve different domains and perform different functions from each other in Escherichia coli cells.  相似文献   

5.
DnaA protein, the initiator for chromosomal DNA replication in Escherichia coli, has various activities, such as oligomerization (DnaA-DnaA interaction), ATP-binding, ATPase activity and membrane-binding. Site-directed mutational analyses have revealed not only the amino acid residues that are essential for these activities but also the functions of these activities. Following is a summary of the functions and regulatory mechanisms of DnaA protein in the initiation of chromosomal DNA replication. ATP-bound DnaA protein, but not other forms of the protein binds to the origin of DNA replication and forms oligomers to open-up the duplex DNA. This oligomerization is mediated by a DnaA-DnaA interaction through the N-terminal region of the protein. After initiation of DNA replication, the ATPase activity of DnaA protein is stimulated and DnaA protein is inactivated to the ADP-bound form to suppress the re-initiation of DNA replication. DnaA protein binds to acidic phospholipids through an ionic interaction between basic amino acid residues of the protein and acidic residues of phospholipids. This interaction seems to be involved in the re-activation of DnaA protein (from the ADP-bound form to the ATP-bound form) to initiate DNA replication after the appropriate interval.  相似文献   

6.
Escherichia coli DnaA, an AAA+ superfamily protein, initiates chromosomal replication in an ATP-binding-dependent manner. Although DnaA has conserved Walker A/B motifs, it binds adenine nucleotides 10- to 100-fold more tightly than do many other AAA+ proteins. This study shows that the DnaA Asp-269 residue, located in the sensor 1 motif, plays a specific role in supporting high-affinity ATP/ADP binding. The affinity of the DnaA D269A mutant for ATP/ADP is at least 10- to 100-fold reduced compared with that of the wild-type and DnaA R270A proteins. In contrast, the abilities of DnaA D269A to bind a typical DnaA box, unwind oriC duplex in the presence of elevated concentrations of ATP, load DnaB onto DNA and support minichromosomal replication in a reconstituted system are retained. Whereas the acidic Asp residue is highly conserved among eubacterial DnaA homologues, the corresponding residue in many other AAA+ proteins is Asn/Thr and in some AAA+ proteins these neutral residues are essential for ATP hydrolysis but not ATP binding. As the intrinsic ATPase activity of DnaA is extremely weak, this study reveals a novel and specific function for the sensor 1 motif in tight ATP/ADP binding, one that depends on the alternate key residue Asp.  相似文献   

7.
Excessive initiation of chromosomal replication occurs in the dnaAcos mutant at 30°C. Whereas purified wild-type DnaA protein binds ATP and ADP tightly, DnaAcos protein is defective for such nucleotide binding. As initiation is a multistep reaction and DnaA protein functions at each step, activities of DnaAcos protein need to be examined precisely. DnaAcos protein specifically bound a DNA fragment containing the chromosomal replication origin with an affinity similar to that seen with the wild-type protein. In a system reconstituted with purified proteins at 30°C, the mutant protein initiated replication of single-stranded DNA that contains a DnaA-binding hairpin structure. Thus, DnaAcos protein basically sustains affinity to a DnaA-binding sequence and functions in the loading of DnaB helicase onto single-stranded DNA. Thermal stabilities of wild-type DnaA and DnaAcos activities were comparable. Unlike wild-type DnaA protein, DnaAcos protein was inactive for minichromosomal replication in systems reconstituted with purified proteins in which the ATP-bound form of DnaA protein is required for initiation. Taken together, the data indicate that the prominent defect in DnaAcos protein appears to be the inability to bind nucleotide.  相似文献   

8.
Under the condition of expression of lambda P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the lambda P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the lambda P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of lambda P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.  相似文献   

9.
10.
We characterized three mutant DnaA proteins with an amino acid substitution of R334H, R342H and E361G that renders chromosomal replication cold (20 degrees C) sensitive. Each mutant DnaA protein was highly purified from overproducers, and replication activities were assayed in in vitro oriC replication systems. At 30 degrees C, all three mutant proteins exhibited specific activity similar to that seen with the wild-type protein, whereas at 20 degrees C, there was much less activity in a replication system using a crude replicative extract. Regarding the affinity for ATP, the dissociation rate of bound ATP and binding to oriC DNA, the three mutant DnaA proteins showed a capacity indistinguishable from that of the wild-type DnaA protein. Activity for oriC DNA unwinding of the two mutant DnaA proteins, R334H and R342H, was more sensitive to low temperature than that of the wild-type DnaA protein. We propose that R334H and R342H have a defect in their potential to unwind oriC DNA at low temperatures, the result being the cold-sensitive phenotype in oriC DNA replication. The two amino acid residues of DnaA protein, located in a motif homologous to that of NtrC protein, may play a role in the formation of the open complex. The E361 residue may be related to interaction with another protein present in a crude cell extract.  相似文献   

11.
Oligomerization of the initiator protein, DnaA, on the origin of replication (oriC) is crucial for initiation of DNA replication. Studies in Escherichia coli (Gram-negative) have revealed that binding of DnaA to ATP, but not hydrolysis of ATP, is sufficient to promote DnaA binding, oligomerization and DNA strand separation. To begin understanding the initial events involved in the initiation of DNA replication in Mycobacterium tuberculosis (Gram-positive), we investigated interactions of M. tuberculosis DnaA (DnaA(TB)) with oriC using surface plasmon resonance in the presence of ATP and ADP. We provide evidence that, in contrast to what is observed in E. coli, ATPase activity of DnaA(TB) promoted rapid oligomerization on oriC. In support, we found that a recombinant mutant DnaA(TB) proficient in binding to ATP, but deficient in ATPase activity, did not oligomerize as rapidly. The corresponding mutation in the dnaA gene of M. tuberculosis resulted in non-viability, presumably due to a defect in oriC-DnaA interactions. Dimethy sulphate (DMS) footprinting experiments revealed that DnaA(TB) bound to DnaA boxes similarly with ATP or ADP. DnaA(TB) binding to individual DnaA boxes revealed that rapid oligomerization on oriC is triggered only after the initial interaction of DnaA with individual DnaA boxes. We propose that ATPase activity enables the DnaA protomers on oriC to rapidly form oligomeric complexes competent for replication initiation.  相似文献   

12.
DnaA protein (the initiator protein) binds and clusters at the four DnaA boxes of the Escherichia coli chromosomal origin (oriC) to promote the strand opening for DNA replication. DnaA protein activity depends on the tight binding of ATP; the ADP form of DnaA protein, generated by hydrolysis of the bound ATP, is inactive. Rejuvenation of ADP-DnaA protein, by replacement with ATP, is catalyzed by acidic phospholipids in a highly fluid bilayer. We find that interaction of DnaA protein with oriC DNA is needed to stabilize DnaA protein during this rejuvenation process. Whereas DnaA protein bound to oriC DNA responds to phospholipids, free DnaA protein is inactivated by phospholipids and then fails to bind oriC. Furthermore, oriC DNA facilitates the high affinity binding of ATP to DnaA protein during treatment with phospholipids. A significant portion of the DnaA protein associated with oriC DNA can be replaced by the ADP form of the protein, suggesting that all of the DnaA protein bound to oriC DNA need not be rejuvenated between rounds of replication.  相似文献   

13.
DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~ 15 Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication.  相似文献   

14.
In complex with ATP, but not ADP, DnaA protein multimers unwind a specific region of duplex DNA within the chromosomal replication origin, oriC, triggering a series of reactions that result in initiation of DNA replication. Following replication initiation, ATP hydrolysis, which is coupled to DNA replication, results in the generation of initiation-incompetent ADP-DnaA. Suppression of overinitiation of replication requires that ADP-DnaA complexes be stably maintained until the next round of replication. Thus, the functional and structural requirements that ensure stable nucleotide binding to DnaA are crucial for proper regulation of replication. Here, we demonstrate that Glu143 of DnaA, located within the AAA+ box II N-linker motif, is a key residue involved in stable nucleotide binding. A Glu143 substitution variant of DnaA (DnaA E143A) bound to ADP on ice with an affinity similar to wild-type DnaA, but the resultant ADP-DnaA E143A complex was more labile at 37 °C than wild-type ADP-DnaA complexes. Consistent with this, conversion of ADP-DnaA E143A to ATP-DnaA E143A was stimulated at 37°C in the presence of ATP, which also stimulated replication of a minichromosome in an in vitro reconstitution reaction. Expression of DnaA E143A in vivo inhibited cell growth in an oriC-dependent manner, suggesting that DnaA E143A caused over-initiation of replication, consistent with the in vitro results. Glu is a highly conserved residue at the corresponding position of γ-proteobacterial DnaA orthologs. Our finding of the novel role for the DnaA N-linker region may represent a conserved function of this motif among those DnaA orthologs.  相似文献   

15.
The biochemical aspects of the initiation of DNA replication in Mycobacterium avium are unknown. As a first step towards understanding this process, M. avium DnaA protein, the counterpart of Escherichia coli replication initiator protein, was overproduced in E. coli with an N-terminal histidine tag and purified to homogeneity on a nickel affinity column. The recombinant DnaA protein bound both ATP and ADP with high affinity and showed a weak ATPase activity. ADP, following the hydrolysis of ATP, remained bound to the protein strongly and the exchange of ATP for bound ADP was found to be weak. Acidic phospholipids such as phosphatidylinositol, phosphatidylglycerol, and cardiolipin, promoted the dissociation of ADP from the DnaA protein, whereas the neutral phospholipid, phosphatidylethanolamine, did not. The phospholipid promoted dissociation of ADP from DnaA protein was stimulated in the presence of the M. avium origin of replication. We suggest that the initiation of DNA replication in M. avium involves an interplay among DnaA, adenine nucleotides and phospholipids.  相似文献   

16.
In Escherichia coli, regulatory inactivation of the replication initiator DnaA occurs after initiation as a result of hydrolysis of bound ATP to ADP, but it has been unknown how DnaA is controlled to coordinate cell growth and chromosomal replication in Gram-positive bacteria such as Staphylococcus aureus. This study examined the roles of ATP binding and its hydrolysis in the regulation of the S. aureus DnaA activity. In vitro, S. aureus DnaA melted S. aureus oriC in the presence of ATP but not ADP by a mechanism independent of ATP hydrolysis. Unlike E. coli DnaA, binding of ADP to S. aureus DnaA was unstable. As a result, at physiological concentrations of ATP, ADP bound to S. aureus DnaA was rapidly exchanged for ATP, thereby regenerating the ability of DnaA to form the open complex in vitro. Therefore, we examined whether formation of ADP-DnaA participates in suppression of replication initiation in vivo. Induction of the R318H mutant of the AAA+ sensor 2 protein, which has decreased intrinsic ATPase activity, caused over-initiation of chromosome replication in S. aureus, suggesting that formation of ADP-DnaA suppresses the initiation step in S. aureus. Together with the biochemical features of S. aureus DnaA, the weak ability to convert ATP-DnaA into ADP-DnaA and the instability of ADP-DnaA, these results suggest that there may be unidentified system(s) for reducing the cellular ratio of ATP-DnaA to ADP-DnaA in S. aureus and thereby delaying the re-initiation of DNA replication.  相似文献   

17.
We have developed a simple three-step method for transferring oriC mutations from plasmids to the Escherichia coli chromosome. Ten oriC mutations were used to replace the wild-type chromosomal origin of a recBCsbcB host by recombination. The mutations were subsequently transferred to a wild-type host by transduction. oriC mutants with a mutated DnaA box R1 were not obtained, suggesting that R1 is essential for chromosomal origin function. The other mutant strains showed the same growth rates, DNA contents and cell mass as wild-type cells. Mutations in the left half of oriC, in DnaA boxes M, R2 or R3 or in the Fis or IHF binding sites caused moderate asynchrony of the initiation of chromosome replication, as measured by flow cytometry. In mutants with a scrambled DnaA box R4 or with a modified distance between DnaA boxes R3 and R4, initiations were severely asynchronous. Except for oriC14 and oriC21, mutated oriCs could not, or could only poorly, support minichromosome replication, whereas most of them supported chromosome replication, showing that the classical definition of a minimal oriC is not valid for chromosome replication. We present evidence that the functionality of certain mutated oriCs is far better on the chromosome than on a minichromosome.  相似文献   

18.
Katayama T  Sekimizu K 《Biochimie》1999,81(8-9):835-840
Genetic and biochemical evidence indicates that initiation of chromosomal replication in Escherichia coli occurs in a nucleoprotein complex at the replication origin (oriC) formed with DnaA protein. The frequency of initiation at oriC is tightly regulated to only once per chromosome per cell cycle. To prevent untimely, extra initiations, negative control for initiation is indispensable. Recently, we found that the function of the initiator protein, DnaA, is controlled by DNA polymerase III holoenzyme, the replicase of the chromosome. The ATP-bound form of DnaA protein, an active form for initiation, is efficiently converted to the ADP bound form, an inactive form, since a subunit of the polymerase loaded on DNA (beta subunit sliding clamp) stimulates hydrolysis of ATP bound to DnaA protein. Comparison of this system, RIDA (regulatory inactivation of DnaA), with other systems for negative regulation of initiation is included in this review, and the roles of these systems for concerted control for initiation during the cell cycle are discussed.  相似文献   

19.
Kato J  Katayama T 《The EMBO journal》2001,20(15):4253-4262
The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the beta-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA(+), as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA(+) proteins that comprise the apparatus regulating the activity of the initiator of replication.  相似文献   

20.
Proteins that bind and hydrolyze ATP are frequently involved in the early steps of DNA replication. Recent studies of Saccharomyces cerevisiae suggest that two members of the AAA+ ATPase family--the origin recognition complex and Cdc6p--have separable roles for ATP binding and ATP hydrolysis during eukaryotic DNA replication. Intriguingly, the proposed regulation of these eukaryotic replication proteins by ATP has functional similarities to the ATP-dependent control of the DnaA and DnaC initiation factors from Escherichia coli. Comparison of the ATP regulation of these factors suggests that ATP binding and hydrolysis acts as a molecular switch that couples key events during initiation of replication. This switch results in a significant change in protein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号