首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HepG2 cells, which synthesize and secrete fibrinogen, accumulate surplus Aalpha and gamma chains. The nonsecreted fibrinogen chains are degraded both by proteasomes and lysosomes, with unassembled chains primarily degraded by proteasomes and an Aalpha-gamma complex by lysosomes. To further determine the mechanisms by which unassembled fibrinogen chains are degraded, and to explain the pools of Aalpha and gamma chains that occur in HepG2 cells, the association of fibrinogen chains with Sec61beta, a component of the translocon, and with a cytosol chaperone, Hsp70, was studied in both HepG2 cells and COS cells expressing single fibrinogen chains. Retrotranslocation from the lumen of the endoplasmic reticulum was shown by treatment with MG132, a proteasome inhibitor. MG132 caused glycosylated Bbeta to accumulate on Sec61beta in COS cells expressing Bbeta and acted similarly with all three fibrinogen chains in HepG2 cells. In HepG2 cells, Bbeta was associated with Sec61beta ahead of Aalpha and gamma chains, suggesting that pools of Aalpha and gamma chains may be caused by unequal rates of retrotranslocation. In COS cells, retrotranslocation into the cytoplasm was demonstrated by the ATP-sensitive association of ubiquitinylated Aalpha, Bbeta, and gamma chains bound to Hsp70. More Aalpha and gamma than Bbeta accumulated on Hsp70 of HepG2 cells, consistent with more rapid degradation of Bbeta. Overexpression of Hsp70 in HepG2 cells resulted in decreased secretion, but not synthesis, of fibrinogen. Decreased secretion may be due to enhanced degradation of unassembled fibrinogen chains, indicating that proteolysis by proteasomes might regulate both the intracellular pools of fibrinogen chains and fibrinogen secretion.  相似文献   

2.
Recent studies have shown that ubiquitin-dependent proteolysis by proteasomes plays an essential role in the degradation of ER-retained proteins. We investigated the degradation of individual fibrinogen chains in transfected COS cells which express but do not secrete single chains. In transfected COS cells, the degradation of fibrinogen Bbeta and gamma chain was markedly inhibited by the proteasome inhibitors lactacystin and MG132. These specific proteasome inhibitors also partially affected the degradation of Aalpha chain. In HepG2 cells, which synthesize and secrete fibrinogen, the degradation of intracellular free gamma chain was also inhibited by MG132. We also detected high molecular weight polyubiquitinated forms of fibrinogen chains in transfected COS cells and in HepG2 cells by sequential immunoprecipitation. These results implicate proteasomes in the degradation of fibrinogen chains. In COS cells, gamma chains have a longer half-life than Bbeta chains and Aalpha chains, suggesting that the presence of surplus gamma chains in fibrinogen-producing cells is due to the unequal degradation rate of fibrinogen chains. These results indicate that the ubiquitin-proteasome pathway may be a major system for the degradation of unassembled fibrinogen chains.  相似文献   

3.
This study describes a purification protocol of salmon fibrinogen that gives a consumable and highly clottable fibrinogen. Some characteristics of salmon and human fibrinogen are compared. Fibrinogen was purified from barium sulphate adsorbed plasma of Atlantic salmon, using two steps of 25% ammonium sulphate precipitation followed by ultrafiltration. The clottability of the purified salmon fibrinogen was 91%. The Aalpha chains of salmon fibrinogen were heterogeneous with a molecular mass of 90-110 kDa, compared to approximately 67 kDa of human fibrinogen Aalpha chains. The Bbeta and gamma chains of salmon and human fibrinogen had molecular masses of approximately 55 and 50 kDa, respectively. Western blotting revealed that polyclonal rabbit anti-human fibrinogen antibodies had affinity for the gamma chains of salmon fibrinogen, making it possible to study factor XIII activity in purified salmon fibrinogen. Cross-linking of either gamma-gamma or gamma-alpha chains was not detected upon incubation of the purified fibrinogen with thrombin and calcium alone, but was detected when clotting was performed in plasma indicating absence of factor XIII activity in the purified product.  相似文献   

4.
Intracellular assembly of human fibrinogen   总被引:7,自引:0,他引:7  
Hep-G2 cells, pulse-labeled with L-[35S]methionine, incorporate radioactivity within 2 min into precursor forms of fibrinogen and into fibrinogen. Pulse-labeled intracellular fibrinogen is first composed of radioactive B beta chains, followed by nascent A alpha chains. Radioactive gamma chains accumulate in the cells and later contribute, via intermediate forms, to the assembly of fibrinogen. Following a pulse-chase incubation with L-[35S]methionine, the radioactive composition of newly secreted fibrinogen also reflects the fact that there is a large intracellular pool of gamma chains.  相似文献   

5.
Assembly and secretion of recombinant human fibrinogen   总被引:6,自引:0,他引:6  
Expression vectors containing full-length cDNAs for each of the human fibrinogen chains were constructed. COS-1 cells were transfected with single vectors, mixtures of two, or with all three vectors and stable cell lines selected. Cells transfected with single vectors, or with mixtures of any two vectors, expressed the appropriate fibrinogen chains but did not secrete them. COS cells transfected with three vectors expressed all of the chains and secreted fibrinogen. COS cells transfected with three vectors contained, intracellularly, a mixture of fibrinogen-related proteins. The four main intracellular products were nascent fibrinogen, an A alpha.gamma complex, free A alpha chains, and free gamma chains. This is a similar pattern to that noted in Hep G2 cells. The intracellular forms of fibrinogen were sensitive to endoglycosidase H, indicating that they reside in a pre-Golgi compartment. Secreted fibrinogen was endoglycosidase H-insensitive, suggesting that the secreted glycoprotein moieties were processed in the normal manner. When mixed with plasma fibrinogen, radiolabeled recombinant fibrinogen was incorporated into a thrombin-induced clot. These studies demonstrate that COS cells transfected with all three fibrinogen chain cDNAs are capable of assembling and secreting a functional fibrinogen molecule.  相似文献   

6.
Human fibrinogen molecules contain two classes of functionally equivalent γ chains (termed γ and γ′) differing by their COOH-terminal amino acid sequences. We investigated rat plasma fibrinogen for the presence of this heterogeneity using DEAE-cellulose chromatography to separate reduced S-carboxymethylated chains. Like human γ′ chains, rat γ′ chains were more negatively charged, somewhat larger (~1000 daltons), had a different COOH-terminal acid than γ chains, and were functionally equivalent to other γ chains. The γ′ chain population from normal and turpentine-stimulated animals amounted to 28 and 30% of all γ chains, respectively, suggesting that regulation of their production is not sensitive to stimulation of fibrinogen synthesis.  相似文献   

7.
Previous studies indicated that synthesis of B beta chain may be a rate-limiting factor in the production of human fibrinogen since Hep G2 cells contain surplus pools of A alpha and gamma but not of B beta chains, and fibrinogen assembly commences by the addition of preformed A alpha and gamma chains to nascent B beta chains attached to polysomes. To test whether B beta chain synthesis is rate limiting Hep G2 cells were transfected with B beta cDNA, and its effect on fibrinogen synthesis and secretion was measured. Two sets of stable B beta cDNA-transfected Hep G2 cells were prepared, and both cell lines synthesized 3-fold more B beta chains than control cells. The B beta-transfected cells also synthesized and secreted increased amounts of fibrinogen. Transfection with B beta cDNA not only increased the synthesis of B beta chain but also increased the rate of synthesis of the other two component chains of fibrinogen and maintained surplus intracellular pools of A alpha and gamma chains. Transfection with B beta cDNA did not affect the synthesis of albumin, transferrin, or anti-chymotrypsin and had a small inhibitory effect on the synthesis of C-reactive protein. Taken together these studies demonstrate that increased B beta chain synthesis specifically causes increased production of the other two component chains of fibrinogen and that unequal and surplus amounts of A alpha and gamma chains are maintained intracellularly.  相似文献   

8.
Chromosomal linkage as well as sequence homologies provide unequivocal evidence that the genes for the alpha, beta and gamma chains of fibrinogen arose by successive duplication of a single ancestral gene. Yet, when the three fibrinogen chains are aligned by amino acid homology, the positions of intervening sequences coincide at only two positions for all three chains. While one additional intron occurs at a homologous site in the beta and gamma chains, none of the positions of the remaining 11 introns in the three genes is shared. This arrangement of introns in the three fibrinogen genes suggests that either introns were selectively lost, implying that there is essential information in the retained introns, or the common introns were present in the ancestral fibrinogen gene and introns have been randomly inserted since the triplication of the original gene. The more likely possibility of selective loss of introns implies that the ancestral gene, as it existed about one billion years ago, must have been composed of numerous small exons.  相似文献   

9.
HepG2 cells stably transfected with cDNA-encoding single fibrinogen chains overexpress fibrinogen and have increased (4-fold) secretion of apolipoprotein B. Overexpression of fibrinogen does not affect the secretion of three representative acute-phase proteins but causes a small increase in albumin secretion. Enhanced apolipoprotein B secretion is due to less intracellular degradation and not to increased expression. The increased secretion of apolipoprotein B is independent of the acute-phase response, since stimulation of fibrinogen gene expression by interleukin 6 did not affect secretion. HepG2 cells overexpressing fibrinogen chains had increased 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA levels, enhanced cholesterol production but normal levels of triglyceride and phospholipid synthesis and of sterol response binding proteins. These results, that associate overexpression of fibrinogen with enhance apolipoprotein B secretion, may be significant since epidemiological studies indicate that elevated levels of fibrinogen and lipids are independent risk factors in coronary artery disease.  相似文献   

10.
Expression of the fibrinogen genes in rat megakaryocytes   总被引:3,自引:0,他引:3  
A variety of evidence suggests that megakaryocytes synthesize fibrinogen and comparative immunochemical and structural studies indicate that fibrinogen produced in or associated with megakaryocytes may be different than fibrinogen produced in the liver. Two studies have reported that the gamma' chain, which is produced from the gamma chain gene by alternative splicing, is absent from fibrinogen produced in the megakaryocyte. Since there is only a single gene for each of the three fibrinogen chains the reported structural differences suggest different mechanisms for production of hepatic and megakaryocytic fibrinogen. We have begun an investigation of the varying mechanisms for expression of the fibrinogen genes by examining the structure of fibrinogen mRNA's in the two tissues. Fibrinogen mRNA's of identical length are found in both liver and megakaryocytes. Furthermore, despite the reported absence of the gamma' chain in platelet-associated fibrinogen, we have used a probe specific for the alternative spliced region of the gamma' mRNA to clearly demonstrate this chain in megakaryocyte mRNA. These studies indicate that the gamma' mRNA is either not translated in platelets or that the gamma' chain is unable to associated with the alpha and beta chains to form a mature molecule.  相似文献   

11.
A single chromatography on CM 52 cellulose was sufficient to separate the S-carboxymethylated chains of human fibrinogen with a variable gradient mixer. The purity of the chains was confirmed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Approximately 36 percent of the S-carboxymethylated fibrinogen was recovered as the purified chains.  相似文献   

12.
Canine fibrinogen was digested by a complex of proteases from Streptomyces griseus. The degradation products were purified by gel-filtration, DEAE-cellulose chromatography and electrophoresis, resulting in nine glycopeptides, eight of which contained aspartic acid and one--serine. The other amino acids were found only in trace amounts. The glycopeptides were shown to contain hexoamines, mannose, galactose and sialic acid. The oligosaccharide chains form a sequence of structurally similar variants. The individual microheterogeneity of canine fibrinogen with respect to carbohydrate chains was detected. A comparison of the carbohydrate composition of fibrinogen and glycopeptides suggests the presence of four carbohydrate chains in the protein molecule.  相似文献   

13.
Recently, we have found that defibrination of rats with Malayan pit viper venom induces a 10-38-fold increase in the levels of translatable fibrinogen mRNA in the liver. We have used this response to obtain cDNA clones for the three polypeptide chains of rat fibrinogen. A large cDNA library was created in pBR322 from induced rat liver polyadenylated RNA by the poly(dG, dC)-tailing method. Part of this library was screened using colony hybridization with [32P]cDNA prepared from induced and noninduced rat liver RNA. Colonies consistently giving a more intense signal with the induced [32P]cDNA were considered possible fibrinogen recombinants and were used for hybrid selection and translation of mRNA. In this way, cDNA clones for each of the three fibrinogen mRNA's were identified. Analysis of polyadenylated RNA by Northern blotting indicates that the three chains are synthesized from mRNA's of 2300, 2050, and 1950 nucleotides for the alpha, beta, and gamma chains, respectively. The fact tha each of the three chains has a separate mRNA indicates that the highly coordinated regulation of the three messages for rat fibrinogen does not occur by translation of a common cytoplasmic RNA.  相似文献   

14.
The gamma- and Bbeta-polypeptide chains of purified human fibrinogen have each been resolved into two major species: gammaL and gammaR and BbetaL and BbetaR. These molecular variants, separable on CM-cellulose, differ from each other in sialic acid content: approximately 2 residues of sialic acid per molecule of polypeptide chain for the L species to 1 residue of sialic acid per molecule for the R species. The two types of each polypeptide are demonstrable in preparations of fibrinogen from single donors as well as in pooled fibrinogen. The L and R forms of the gamma chains or the Bbeta chains do not differ in their electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels, suggesting that they are similar in molecular weight. They are also indistinguishable in polyacrylamide gels in the presence of urea at pH 2.7. Maps of ninhydrin-positive tryptic peptides of the L and R forms of the gamma chain displayed differences within a small group of peptides which have been shown to contain the sialic acid residues present in the gamma-polypeptides. No differences between the peptide maps of BbetaL and BbetaR chains were obvious. A larger ratio of L/R in the gamma and Bbeta chains of dysfibrinogenemia fibrinogen "Zürich II" than in those of normal fibrinogen explains the higher content of sialic acid measured in the native Zürich II fibrinogen molecule.  相似文献   

15.
The interaction of fibrinogen with the mannose-specific lectins concanavalin A (ConA), its acetyl derivative (Ac-ConA) and Lens culinaris agglutinin (LcH) was studied. Both ConA and LcH interact specifically with individual fibrinogen B beta and gamma chains and with denatured fragments D and E. However, analysis of the binding data shows that four moles of Ac-ConA are bound per mole of fibrinogen with two sets of binding sites (Kd1 = 2.4 microM and Kd2 = 16.6 microM; n1 = n2 = 2) while only two moles of LcH are bound per mole of fibrinogen (Kd = 2.6 microM). Ultracentrifugation studies are also in agreement with the presence in the fibrinogen molecule of two and four binding sites for LcH and Ac-ConA, respectively. No aggregates of fibrinogen formed through LcH or Ac-ConA linkages are observed. The use of a crosslinking reagent and ultracentrifugal analysis of the lectin-fibrinogen fragments D1 and E complexes indicated that ConA, as well as Ac-ConA, interact with both fragments D and E while LcH interacts only with fragment D. Furthermore, the binding of ConA to both D and E domains in the intact fibrinogen molecule is clearly demonstrated by using a bifunctional reagent. The bivalent character of ConA tetramers may be misinterpreted as a lack of accessibility of the lectin to two of the four carbohydrate chains of fibrinogen. The differential binding of LcH and ConA to the carbohydrate chains of fibrinogen can be related to a different exposure of the oligosaccharide in D and E fragments and domains and to the different requirements of both lectins for their binding to glycoproteins.  相似文献   

16.
We characterized the two-dimensional electrophoretic patterns of fibrinogen chains α, β, and γ from the plasma of six animal species – Bos taurus, Canis familiaris, Equus caballus, Felis catus, Gallus domesticus and Sus scrofa. Comparing the spots resolved from serum and plasma samples, or exploiting the cross-reactivity of animal fibrinogen with an antiserum raised against the human protein could detect only some of the fibrinogen chains. Conversely, the analysis of the precipitate obtained by heating plasma for some minutes at 56 °C was adequate for the recognition of all fibrinogen chains in all samples. Physicochemical properties of the homologous proteins were found to extensively vary across species, with complete separation among the mapping areas for α, β and γ chains and maximal heterogeneity among β chains.  相似文献   

17.
The shape and solution properties of fibrinogen are affected by the location of the C-terminal portion of the Aα chains, which is presently still controversial. We have measured the hydrodynamic properties of a human fibrinogen fraction with these appendages mostly intact, of chicken fibrinogen, where they lack 11 characteristic 13-amino acids repeats, and of human fragment X, a plasmin early degradation product in which they have been removed. The human fibrinogen/fragment X samples were extensively characterized by SDS-PAGE/Western blotting and mass spectrometry, allowing their composition to be precisely determined. The solution properties of all samples were then investigated by analytical ultracentrifugation and size-exclusion HPLC coupled with multi-angle light scattering and differential pressure viscometry detectors. The measured parameters suggest that the extra repeats have little influence on the overall fibrinogen conformation, while a significant change is brought about by the removal of the C-terminal portion of the Aα chains beyond residue Aα200.  相似文献   

18.
Three forms of the normal human plasma fibrinogen gamma-chain which differ in molecular weight have been purified. Plasma fibrinogen was separated by ion exchange chromatography on DEAE-Sephacel into three populations of molecules, each with a unique gamma-chain composition. Following reduction and S-carboxymethylation, the fibrinogen polypeptide chains in each chromatographic peak were separated by ion exchange chromatography on DEAE-Sephacel and identified following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The A alpha, B beta and smallest gamma-chain (gamma 50) eluted at progressively higher ionic strengths, but the elution positions of A alpha, B beta and gamma 50 chains were identical for fibrinogen from each of the three different chromatographic fractions. The unique gamma chain of fibrinogen in the second chromatographic peak (gamma 55) eluted at an ionic strength higher than that of the gamma 50 chain, while the largest gamma-chain (gamma 57.5), which was contained only in the third chromatographic peak of fibrinogen, eluted at the highest ionic strength. The higher ionic strengths needed to elute fibrinogen in the second and third peaks was paralleled by the higher ionic strengths needed to elute the gamma-chains unique to them, suggesting that the gamma-chain composition of the three fibrinogen fractions accounted for their differential binding to the ion exchange resin. Following desialation with neuraminidase, the differences in electrophoretic mobilities between the three gamma-chain forms was maintained, indicating that differential migration on SDS-polyacrylamide gel electrophoresis was not due to variation in sialic acid content.  相似文献   

19.
Fibrinogen chains are assembled in a stepwise manner in the rough endoplasmic reticulum prior to secretion of the final six-chain dimeric molecule. Previous studies indicated that the synthesis of B beta may be a rate-limiting factor in the assembly of human fibrinogen. To determine the domains of B beta which interact with the other two component chains of fibrinogen, deletion mutants of B beta were transiently co-expressed, together with A alpha and gamma chains, in COS cells, and fibrinogen assembly and secretion were measured. Deletion of the COOH-terminal half of the B beta chain (amino acids 208-461) did not affect assembly and secretion. Assembly of A alpha, gamma, and B beta also occurred when the first NH2-terminal 72 amino acids of B beta were deleted, but not when 93 amino acids were deleted. This indicates that the B beta domain between amino acids 73 and 93 is necessary for the assembly of the three fibrinogen chains. This domain marks the start of the alpha-helical "coiled-coil" region of fibrinogen.  相似文献   

20.
In order to study the epitopes in fibrin towards which monoclonal antibodies are directed we needed the pure individual polypeptide chains of human fibrinogen in reasonable quantity. We report here a simplified, rapid method of separation of high-purity human fibrinogen chains. Following reduction and S-carboxymethylation of human fibrinogen, the sample was injected directly onto a column of the polymeric reversed-phase perfusion packing POROS 20-R2, and the chains were completely resolved in less than 3 min at a flow-rate of 10 ml/min. The capacity was equivalent to that of a similar sized conventional silica-based column. However the throughput was approximately five to ten times as high. The column was durable and robust in day-to-day use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号