共查询到20条相似文献,搜索用时 16 毫秒
1.
An extracellular phenolic acid esterase produced by the fungus Penicillium expansum in solid state culture released ferulic and ρ-coumaric acid from methyl esters of theacids, and from the phenolic-carbohydrate esters O-[5-O-(trans-feruloyl)-α- l -arabinofuranosyl]-(1 → 3)-O-β- d -xylopyranosyl-(1 → 4)- d -xylopyranose (FAXX) and O-[5-O-((E)-ρ-coumaroyl)-α- l -arabinofuranosyl]-(1 → 3)-O-β- d -xylopyranosyl-(1 → 4)- d -xylopyranose (PAXX). The esterase was purified 360-fold in successive stepsinvolving ultrafiltration and column chromatography by gel filtration, anion exchange andhydrophobic interaction. These chromatographic methods separated the phenolic acid esterasefrom α- l -arabinofuranosidase, pectate and pectin lyase, polygalacturonase,xylanase and β- d -xylosidase activities. The phenolic acid esterase had an apparentmass of 65 kDa under non-denaturing conditions and a mass of 57·5 kDa underdenaturing conditions. Optimal pH and temperature were 5·6 and 37 °C,respectively and the metal ions Cu2 + and Fe3 + atconcentrations of 5 mmol l−1 inhibited feruloyl esterase activity by 95% and44%, respectively, at the optimum pH and temperature. The apparent Km and Vmax of the purified feruloyl esterase for methyl ferulate at pH 5·6 and 37 °Cwere 2·6 mmol l−1 and 27·1 μmol min−1 mg−1 . The corresponding constants of ρ-coumaroylesterase for methyl coumarate were 2·9 mmol l−1 and 18·6 μmol min−1 mg−1 . 相似文献
2.
Purification and characterization of a feruloyl esterase from the intestinal bacterium Lactobacillus acidophilus 总被引:2,自引:0,他引:2
Dietary ferulic acid (FA), a significant antioxidant substance, is currently the subject of extensive research. FA in cereals exists mainly as feruloylated sugar ester. To release FA from food matrices, it is necessary to cleave ester cross-linking by feruloyl esterase (FAE) (hydroxycinnamoyl esterase; EC 3.1.1.73). In the present study, the FAE from a human typical intestinal bacterium, Lactobacillus acidophilus, was isolated, purified, and characterized for the first time. The enzyme was purified in successive steps including hydrophobic interaction chromatography and anion-exchange chromatography. The purified FAE appeared as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent molecular mass of 36 kDa. It has optimum pH and temperature characteristics (5.6 and 37 degrees C, respectively). The metal ions Cu(2+) and Fe(3+) (at a concentration of 5 mmol liter(-1)) inhibited FAE activity by 97.25 and 94.80%, respectively. Under optimum pH and temperature with 5-O-feruloyl-L-arabinofuranose (FAA) as a substrate, the enzyme exhibited a K(m) of 0.0953 mmol liter(-1) and a V(max) of 86.27 mmol liter(-1) min(-1) mg(-1) of protein. Furthermore, the N-terminal amino acid sequence of the purified FAE was found to be A R V E K P R K V I L V G D G A V G S T. The FAE released FA from O-(5-O-feruloyl-alpha-L-arabinofuranosyl)-(1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose (FAXX) and FAA obtained from refined corn bran. Moreover, it released two times more FA from FAXX in the presence of added xylanase. 相似文献
3.
Summary The strictly anaerobic bacterium Clostridium tetanomorphum formed an extracellular lipase when the growth medium contained glycerol in addition to fermentable substrates such as l-glutamate or glucose. The lipase was purified from the concentrated culture supernatant and exhibited a final specific activity
of 900 U/mg. The purified lipase had a Stokes’ radius of 5.0 nm and a sedimentation coefficient of 5.7S. The native molecular
mass calculated from these values was 118,000 Da, which is considerably higher than the molecular mass calculated by PAGE
(70,000 Da). With p-nitrophenyl esters of different fatty acids as substrates enzyme activity was highest when the acyl chain was short (C2). The purified lipase showed no protease or thioesterase activity. 相似文献
4.
G oldberg , J.D. & E dwards , C. 1990. Purification and characterization of an extracellular amylase from a thermophilic streptomycete. Journal of Applied Bacteriology 69 , 712–717.
A single extracellular alpha-amylase (1,4-α-D-glucan glucanohydrolase, EC 3.2.1.1) from Streptomyces thermoviolaceus subsp. apingens was purified to homogeneity by a starch adsorption method. SDS-PAGE indicated that the enzyme had an apparent M, of 57 kDa and activity was optimal at a pH of 7–2 and a temperature of 55C. It employed an endo-active mechanism to liberate predominantly maltose, as well as smaller amounts of higher oligosaccharides when incubated with starch. EDTA inhibited enzyme activity, suggesting an involvement of a divalent cation in activity. The enzyme was also stabilized by divalent cations when heated and the results suggested a major role for Ca2+ ions for both activity and thermostability. The alpha-amylase from S. thermoviolaceus displayed some similarities with commercially-used streptomycete alpha-amylases. 相似文献
A single extracellular alpha-amylase (1,4-α-D-glucan glucanohydrolase, EC 3.2.1.1) from Streptomyces thermoviolaceus subsp. apingens was purified to homogeneity by a starch adsorption method. SDS-PAGE indicated that the enzyme had an apparent M, of 57 kDa and activity was optimal at a pH of 7–2 and a temperature of 55C. It employed an endo-active mechanism to liberate predominantly maltose, as well as smaller amounts of higher oligosaccharides when incubated with starch. EDTA inhibited enzyme activity, suggesting an involvement of a divalent cation in activity. The enzyme was also stabilized by divalent cations when heated and the results suggested a major role for Ca
5.
Topakas E Moukouli M Dimarogona M Christakopoulos P 《Applied microbiology and biotechnology》2012,94(2):399-411
A ferulic acid esterase (FAE) from the thermophilic fungus Myceliophthora thermophila (synonym Sporotrichum thermophile), belonging to the carbohydrate esterase family 1 (CE-1), was functionally expressed in methylotrophic yeast Pichia pastoris. The putative FAE from the genomic DNA was successfully cloned in P. pastoris X-33 to confirm that the enzyme exhibits FAE activity. The recombinant FAE was purified to its homogeneity (39 kDa) and subsequently
characterized using a series of model substrates including methyl esters of hydroxycinnamates, alkyl ferulates and monoferuloylated
4-nitrophenyl glycosides. The substrate specificity profiling reveals that the enzyme shows a preference for the hydrolysis
of methyl caffeate and p-coumarate and a strong preference for the hydrolysis of n-butyl and iso-butyl ferulate. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose,
whilst it was found capable of de-esterifying acetylated glucuronoxylans. Ferulic acid (FA) was efficiently released from
destarched wheat bran when the esterase was incubated together with an M3 xylanase from Trichoderma longibrachiatum (a maximum of 41% total FA released after 1 h incubation). Prediction of the secondary structure of MtFae1a was performed in the PSIPRED server whilst modelling the 3D structure was accomplished by the use of the HH 3D structure
prediction server. 相似文献
6.
A polygalacturonase was purified from the thermophilic fungus, Thermomyces lanuginosus to apparent homogeneity by ultrafiltration, acetone precipitation and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60 °C. The apparent KM with potassium pectate was 0.67 mg/ml and the Vmax was 7.2 × 105 mol/min/mg protein. The apparent molecular weight of the enzyme was 59 kDa and it contained approximately 10% carbohydrate. The enzyme was completely stable at room temperature (32 ± 3 °C) and retained about 50% activity at 50 °C for 6 h. The zymogram of the purified enzyme revealed two activity bands, one of which was a major one. Polyclonal antibodies raised against the enzyme did not show any immunological relatedness with other mesophilic polygalacturonases. 相似文献
7.
Purification and characterization of an extracellular alpha-amylase from Clostridium perfringens type A. 总被引:1,自引:0,他引:1 下载免费PDF全文
An alpha-amylase (EC 3.2.1.1) secreted by Clostridium perfringens NCTC 8679 type A was purified to homogeneity and characterized. It was isolated from concentrated cell-free culture medium by ion-exchange and gel permeation chromatography. The enzyme exhibited maximal activity at pH 6.5 and 30 degrees C without the presence of calcium. The pI of the enzyme was 4.75. The estimated molecular weight of the purified enzyme was 76 kDa. The purified enzyme was inactivated between 35 and 40 degrees C, which increased to between 45 and 50 degrees C in the presence of calcium (5 mM). The purified enzyme produced a mixture of oligosaccharides as major end products of starch hydrolysis, indicating alpha-amylase activity. 相似文献
8.
9.
Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit 总被引:2,自引:0,他引:2
Hiol A Jonzo MD Rugani N Druet D Sarda L Comeau LC 《Enzyme and microbial technology》2000,26(5-6):421-430
We have isolated a lipolytic strain from palm fruit that was identified as a Rhizopus oryzae. Culture conditions were optimized and highest lipase production amounting to 120 U/ml was achieved after 4 days of cultivation. The extracellular lipase was purified 1200-fold by ammonium sulfate precipitation, sulphopropyl-Sepharose chromatography, Sephadex G 75 gel filtration and a second sulphopropyl-Sepharose chromatography. The specific activity of the purified enzyme was 8800 U/mg. The lipolytic enzyme has a molecular mass of 32 kDa by SDS-polyacrylamide gel electrophoresis and gel filtration. The enzyme exhibited a single band in active polyacrylamide gel electrophoresis and its isoelectric point was 7.6. Analysis of Rhizopus oryzae lipase by RP-HPLC confirmed the homogeneity of the enzyme preparation. Determination of the N-terminal sequence over 19 amino acid residues showed a high homology with lipases of the same genus. The optimum pH for enzyme activity was 7.5. Lipase was stable in the pH range from 4.5 to 7.5. The optimum temperature for lipase activity was 35 degrees C and about 65% of its activity was retained after incubation at 45 degrees C for 30 min. The lipolytic enzyme was inhibited by Triton X100, SDS, and metal ions such as Fe(3+), Cu(2+), Hg(2+) and Fe(2+). Lipase activity against triolein was enhanced by sodium cholate or taurocholate. The purified lipase had a preference for the hydrolysis of saturated fatty acid chains (C(8)-C(18)) and a 1, 3-position specificity. It showed a good stability in organic solvents and especially in long chain-fatty alcohol. The enzyme poorly hydrolyzed triacylglycerols containing n-3 polyunsaturated fatty acids, and appeared as a suitable biocatalyst for selective esterification of sardine free fatty acids with hexanol as substrate. About 76% of sardine free fatty acids were esterified after 30 h reaction whereas 90% of docosahexaenoic acid (DHA) was recovered in the unesterified fatty acids. 相似文献
10.
Purification and characterization of the extracellular alpha-amylase from Clostridium acetobutylicum ATCC 824. 下载免费PDF全文
The extracellular alpha-amylase (1,4-alpha-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying alpha-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the alpha-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. alpha-Amylase activity on soluble starch was optimal at pH 5.6 and 45 degrees C. The alpha-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a Km of 3.6 g . liter-1 and a Kcat of 122 mol of reducing sugars . s-1 . mol-1. The alpha-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the alpha-amylase. 相似文献
11.
【目的】阐明嗜热细菌Clostridium thermocellum Xyn Z蛋白的阿魏酸酯酶催化域的酶学特性,为其在生物质能源及其它发酵工业中的应用奠定基础。【方法】分别构建了C.thermocellum Xyn Z的阿魏酸酯酶催化域(FAE)及该阿魏酸酯酶催化域和碳水化合物结合域(FAE-CBM6)编码基因的原核表达载体,并在大肠杆菌菌株BL21(DE3)中异源表达,在此基础上分析比较了温度、pH、底物、金属离子及CBM6结合域对阿魏酸酯酶活性的影响。【结果】重组FAE酶及FAE-CBM6酶发挥催化活性的适宜pH值为5.0-9.0,适宜温度为50-70°C,它们对不同金属离子的响应有差异。【结论】在同一反应条件下,FAE-CBM6酶的酶活均比FAE高,说明CBM6结合域的存在对于阿魏酸酯酶活性有促进作用。 相似文献
12.
Christina Vafiadi Evangelos Topakas Peter Biely & Paul Christakopoulos 《FEMS microbiology letters》2009,296(2):178-184
The cellulolytic system of the thermophilic fungus Sporotrichum thermophile contains a recently discovered esterase that may hydrolyze the ester linkage between the 4- O -methyl- d -glucuronic acid of glucuronoxylan and lignin alcohols. The glucuronoyl esterase named St GE1 was purified to homogeneity with a molecular mass of M r 58 kDa and pI 6.7. The enzyme activity was optimal at pH 6.0 and 60 °C. The esterase displayed a narrow pH range stability at pH 8.0 and retained 50% of its activity after 430 and 286 min at 50 and 55 °C, respectively. The enzyme was active on substrates containing glucuronic acid methyl ester, showing a lower catalytic efficiency on 4-nitrophenyl 2- O -(methyl-4- O -methyl-α- d -glucopyranosyluronate)-β- d -xylopyranoside than its mesophilic counterparts reported in the literature, which is typical of thermophilic enzymes. St GE1 was proved to be a modular enzyme containing a noncatalytic carbohydrate-binding module. LC-MS/MS analysis provided peptide mass and sequence information that facilitated the identification and classification of St GE1 as a family 15 glucuronoyl esterase that showed the highest homology with the hypothetical glucuronoyl esterase CHGG_10774 of Chaetomium globosum CBS 148.51. This work represents the first example of the purification and identification of a thermophilic glucuronoyl esterase from S. thermophile . 相似文献
13.
Si Si Hla Kurokawa J Suryani Kimura T Ohmiya K Sakka K 《Bioscience, biotechnology, and biochemistry》2005,69(11):2138-2145
The Clostridium stercorarium F-9 pel9A gene encodes a pectate lyase Pel9A consisting of 1,240 amino acids with a molecular weight of 135,171. The mature form of Pel9A is a modular enzyme composed of two family-9 catalytic modules of polysaccharide lyases, CM9-1 and CM9-2, in order from the N terminus. Pel9A showed an overall sequence similarity to the hypothetical pectate lyase PelX of Bacillus halodurans (sequence identity 53%), and CM9-2 showed moderate sequence similarities to some pectate lyases of family 9. Sequence identity between CM9-1 and CM9-2 was 21.3%. The full-length Pel9A lacking the N-terminal signal peptide was expressed, purified, and characterized. The enzyme required Ca(2+) ion for its enzyme activity and showed high activity toward polygalacturonic acid but lower activity toward pectin, indicating that Pel9A is a pectate lyase. Immunological analysis using an antiserum raised against the purified enzyme indicated that Pel9A is constitutively synthesized by C. stercorarium F-9. 相似文献
14.
Kathrin Riedela Johannes Rittera Stefan Bauera Karin Bronnenmeiera 《FEMS microbiology letters》1998,164(2):261-267
The non-catalytic region of the Clostridium stercorarium cellulase CelZ (Avicelase I) comprises two protein segments (C and C′) grouped into different subfamilies of cellulose-binding domain (CBD) family III. The C-terminally located family IIIb domain C was identified as a true cellulose-binding domain responsible for anchoring the CelZ enzyme to cellulose. The family IIIc domain C′ immediately adjacent to the catalytic domain was unable to mediate binding to cellulose. A deletion study revealed a lack of independence of this pair of domains: almost the entire C′ domain was required to maintain the catalytic activity and the thermostability of the enzyme. 相似文献
15.
Topakas E Stamatis H Biely P Christakopoulos P 《Applied microbiology and biotechnology》2004,63(6):686-690
A feruloyl esterase (StFAE-A) produced by Sporotrichum thermophile was purified to homogeneity. The purified homogeneous preparation of native StFAE-A exhibited a molecular mass of 57.0±1.5 kDa, with a mass of 33±1 kDa on SDS-PAGE. The pI of the enzyme was estimated by cation-exchange chromatofocusing to be at pH 3.1. The enzyme activity was optimal at pH 6.0 and 55–60 °C. The purified esterase was stable at the pH range 5.0–7.0. The enzyme retained 70% of activity after 7 h at 50 °C and lost 50% of its activity after 45 min at 55 °C and after 12 min at 60 °C. Determination of k
cat/K
m revealed that the enzyme hydrolyzed methyl p-coumarate 2.5- and 12-fold more efficiently than methyl caffeate and methyl ferulate, respectively. No activity on methyl sinapinate was detected. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose and it hydrolyzed 4-nitrophenyl 5-O-trans-feruloyl--l-arabinofuranoside (NPh-5-Fe-Araf) 2-fold more efficiently than NPh-2-Fe-Araf. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with xylanase from S. thermophile (a maximum of 34% total ferulic acid released after 1 h incubation). StFAE-A by itself could release FA, but at a level almost 47-fold lower than that obtained in the presence of xylanase. The potential of StFAE-A for the synthesis of various phenolic acid esters was tested using a ternary water-organic mixture consisting of n-hexane, 1-butanol and water as a reaction system. 相似文献
16.
17.
Bacillus pumilus PS213 was found to be able to release acetate from acetylated xylan. The enzyme catalyzing this reaction has been purified to homogeneity and characterized. The enzyme was secreted, and its production was induced by corncob powder and xylan. Its molecular mass, as determined by gel filtration, is 190 kDa, while sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band of 40 kDa. The isoelectric point was found to be 4.8, and the enzyme activity was optimal at 55 degrees C and pH 8.0. The activity was inhibited by most of the metal ions, while no enhancement was observed. The Michaelis contant (Km) and Vmax for alpha-naphthyl acetate were 1.54 mM and 360 micromol min-1 mg of protein-1, respectively. 相似文献
18.
J. Andrew Hudson Hugh W. Morgan R. M. Daniel 《Applied microbiology and biotechnology》1990,33(6):687-691
Summary An extremely thermophilic anaerobe was isolated from a New Zealand hot spring by incubating bacterial mat strands in a medium containing xylan. The Gramreaction-negative organism that was subsequently purified had a temperature optimum of 70° C and a pH optimum of 7.0. The isolate, designated strain H173, grew on a restricted range of carbon sources. In batch culture H173 could degrade Avicel completely when supplied at 5 or 10 g l–1. There was an initial growth phase, during which a cellulase complex was produced and carbohydrates fermented to form acetic and lactic acids, followed by a phase where cells were not metabolising but the cellulase complex actively converted cellulose to glucose. When co-cultured with strain Rt8.B1, an ethanologenic extreme thermophile, glucose was fermented to ethanol and acetate, and no reducing sugars accumulated in the medium. In pH controlled batch culture H173 produced an increased amount of lactate and acetate but there was again a phase when reducing sugars accumulated in the medium, and these were converted to ethanol by co-culture with Rt8.B1. 相似文献
19.
Topakas E Stamatis H Biely P Kekos D Macris BJ Christakopoulos P 《Journal of biotechnology》2003,102(1):33-44
An extracellular feruloyl esterase (FAE-II) from the culture filtrates of Fusarium oxysporum F3 was purified to homogeneity by SP-Sepharose, t-butyl-HIC and Sephacryl S-200 column chromatography. The protein corresponded to molecular mass and pI values of 27 kDa and 9.9, respectively. The enzyme was optimally active at pH 7 and 45 degrees C. The purified esterase was fully stable at pH 7.0-9.0 and temperature up to 45 degrees C after 1 h incubation. Determination of k(cat)/K(m) revealed that the enzyme hydrolysed methyl sinapinate 6, 21 and 40 times more efficiently than methyl ferulate, methyl coumarate and methyl caffeate, respectively. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 but inactive to the C-2 positions of arabinofuranose such as 4-nitrophenyl 5-O-trans-feruloyl-alpha-L-arabinofuranoside and 4-nitrophenyl 2-O-trans-feruloyl-alpha-L-arabinofuranoside. In the presence of Sporotrichum thermophile xylanase, there was a significant release of ferulic acid from destarched wheat bran by FAE-II, indicating a synergistic interaction between FAE-II and S. thermophile xylanase. FAE-II by itself could release only little ferulic acid from destarched wheat bran. The potential of FAE-II for the synthesis of various phenolic acid esters was tested using as a reaction system a surfactantless microemulsion formed in ternary mixture consisting of n-hexane, 1-propanol and water. 相似文献
20.
Calf pregastric esterase (PGE) was purified from calf gullet tissues. The tissue was excised and lyophilized, and lipid materials were extracted with acetone and n-butanol at -20 degrees C. Proteins were extracted from the delipidated tissue with a buffer containing a chaotropic salt (NaSCN) to solubilize hydrophobically bound protein aggregates. Calf PGE precipitated from the crude extract at pH 5.0. The precipitated, solubilized proteins were subjected to anion-exchange chromatography on DEAE-Sephacel, and the enzymatic activity was eluted using a linear gradient from 0.10 to 0.50 M NaCl at pH 8.0. Fractions with high specific activities were then chromatographed twice using gel filtration on Sephadex G-100. The resultant enzyme was shown to be pure upon discontinuous electrophoresis in 12% polyacrylamide containing 0.1% sodium dodecyl sulfate (SDS-PAGE). From SDS-PAGE gel patterns, a molecular weight of 49,000 was determined. The amino acid composition of the enzyme allowed calculation of an "average hydrophobicity" (Bigelow index) of 1150 cal/residue. This indicates that calf PGE is relatively hydrophobic, being similar to proteins such as alpha-lactalbumin and bovine serum albumin in average hydrophobicity. 相似文献