首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This experiment reports on the localization of zinc within the pancreatic islets of Salmo gairdneri. Individual fish were injected with 65Zn and the distribution of the isotope within the islets was determined by autoradiography. Insulin cells were found to accumulate approximately twice as much zinc per unit area as the rest of the islet tissue. It is presumed that this zinc is involved with the crystallization and storage of insulin within the insulin cells. Various histological methods were investigated to ascertain the procedure which best precipitated zinc and at the same time avoided excess leaching.  相似文献   

2.
Secretion of insulin from pancreatic islets was monitored indirectly by detecting zinc. Anodic stripping voltammetric measurements of zinc were done on a bismuth-modified electrode. Comparison of the performance of bismuth-modified electrodes and mercury film electrodes showed that bismuth is an appropriate alternative for Zn detection. The bismuth-coated electrode was used to detect zinc in insulin samples and insulin secreted from pancreatic islets upon stimulation with high concentrations of K(+). Detection of zinc released from pancreatic islets was done in the culture medium without any further cleanup. This detection method can be used to monitor secretion from pancreatic islets in their native environment.  相似文献   

3.
It is well established that ATP is co-secreted with insulin and zinc from pancreatic beta-cells (β-cells) in response to elevations in extracellular glucose concentration. Despite this knowledge, the physiological roles of extracellular secreted ATP and zinc are ill-defined. We hypothesized that secreted ATP and zinc are autocrine purinergic signaling molecules that activate P2X purinergic receptor (P2XR) channels expressed by β-cells to enhance glucose-stimulated insulin secretion (GSIS). To test this postulate, we performed ELISA assays for secreted insulin at fixed time points within a “real-time” assay and confirmed that the physiological insulin secretagogue glucose stimulates secretion of ATP and zinc into the extracellular milieu along with insulin from primary rat islets. Exogenous ATP and zinc alone or together also induced insulin secretion in this model system. Most importantly, the presence of an extracellular ATP scavenger, a zinc chelator, and P2 receptor antagonists attenuated GSIS. Furthermore, mRNA and protein were expressed in immortalized β-cells and primary islets for a unique subset of P2XR channel subtypes, P2X2, P2X3, P2X4, and P2X6, which are each gated by extracellular ATP and modulated positively by extracellular zinc. On the basis of these results, we propose that, within endocrine pancreatic islets, secreted ATP and zinc have profound autocrine regulatory influence on insulin secretion via ATP-gated and zinc-modulated P2XR channels.  相似文献   

4.
The cells within the intact islet of Langerhans function as a metabolic syncytium, secreting insulin in a coordinated and oscillatory manner in response to external fuel. With increased glucose, the oscillatory amplitude is enhanced, leading to the hypothesis that cells within the islet are secreting with greater synchronization. Consequently, non-insulin-dependent diabetes mellitus (NIDDM; type 2 diabetes)-induced irregularities in insulin secretion oscillations may be attributed to decreased intercellular coordination. The purpose of the present study was to determine whether the degree of metabolic coordination within the intact islet was enhanced by increased glucose and compromised by NIDDM. Experiments were performed with isolated islets from normal and diabetic Psammomys obesus. Using confocal microscopy and the mitochondrial potentiometric dye rhodamine 123, we measured mitochondrial membrane potential oscillations in individual cells within intact islets. When mitochondrial membrane potential was averaged from all the cells in a single islet, the resultant waveform demonstrated clear sinusoidal oscillations. Cells within islets were heterogeneous in terms of cellular synchronicity (similarity in phase and period), sinusoidal regularity, and frequency of oscillation. Cells within normal islets oscillated with greater synchronicity compared with cells within diabetic islets. The range of oscillatory frequencies was unchanged by glucose or diabetes. Cells within diabetic (but not normal) islets increased oscillatory regularity in response to glucose. These data support the hypothesis that glucose enhances metabolic coupling in normal islets and that the dampening of oscillatory insulin secretion in NIDDM may result from disrupted metabolic coupling.  相似文献   

5.
Although it is agreed that autoimmune destruction of pancreatic islets in diabetic BB rats is rapid, reports of endocrine cell content of islets from BB diabetic rats at the time of onset of diabetes vary considerably. Because of the rapid onset of the disease (hours) and the attendant changes in islet morphology and insulin secretion, it was the aim of this study to compare islet beta-cell numbers to other islet endocrine cells as close to the time of onset of hyperglycemia as possible (within 12 h). As it has been reported that hyperglycemia renders the beta cell insensitive to glucose, the early effects of different levels of insulin therapy (well-controlled vs. poorly controlled glycemia) on islet morphology and insulin secretion were examined. When measured within 12 h of onset, insulin content of BB diabetic islets, measured by morphometric analysis or pancreatic extraction, was 60% of insulin content of control islets. Despite significant amounts of insulin remaining in the pancreas, 1-day diabetic rats exhibited fasting hyperglycemia and were glucose intolerant. The insulin response from the isolated perfused pancreas to glucose and the glucose-dependent insulinotropic hormone, gastric inhibitory polypeptide (GIP), was reduced by 95%. Islet content of other endocrine peptides, glucagon, somatostatin, and pancreatic polypeptide, was normal at onset and at 2 weeks post onset. A group of diabetic animals, maintained in a hyperglycemic state for 7 days with low doses of insulin, were compared with a group kept normoglycemic by appropriate insulin therapy. No insulin could be detected in islets of poorly controlled diabetics, while well-controlled animals had 30% of the normal islet insulin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Insulin is stored in pancreatic islets as a zinc-insulin complex, and stimulating the islets results in the release of insulin and zinc. Simulant pancreatic islet beads have been developed using agarose beads (50-250 micro m diameter) derivatized with iminodiacetic acid that have been loaded with zinc. A qualitative comparison of the simulant beads with pancreatic islets has been made by staining with dithizone and a zinc-binding fluorescent dye, TSQ. The binding capacity of simulant beads was determined to be 34 micro mol Zn(2+)/g of dried beads using anodic stripping voltammetry. Hydrochloric acid was used to release zinc from beads to mimic the secretion of insulin from pancreatic islets and a release profile was established. The simulant beads can be used to optimize the islet isolation process and reduce the use of real islets in method development.  相似文献   

7.
In this study, we found that islet cells treated with polyphenol could be preserved for over 2 months under physiological conditions retaining their original function and maintaining their spherical shapes without any insulin secretion. When islets were treated at higher concentration than 250 microg ml(-1), these islets could retain their compact spherical shape over 65 days whereas non-treated islets were scattered ease to break within 2 weeks. The secretional capacity from treated islets in the initial stage is also lower than untreated islets. However, in the case of untreated islets, insulin release rapidly lowered with the progress in the culture time and secretion completely disappeared after 9 days. On the contrary, islets treated with polyphenol (250 microg ml(-1)) in RPMI culture medium showed significant enhancement of insulin secretion on 40th day. The secretional capacity of islets was greatly dependent on the treating concentration. Polyphenol treatment may be a useful method for preservation of mammalian islet cells. By changing the concentration of polyphenol, it is possible to control the preservation duration and insulin secretion of islets.  相似文献   

8.
To study the effects of growth hormone (GH) on the in vitro maturation of fetal islets, the fetal islets were cultured for 7 days in RPMI 1640 containing 10% fetal bovine serum and 11.1 mM glucose with or without GH. Culture with 1 microgram/ml of bovine GH increased the DNA content of the islets and [3H]thymidine incorporation into DNA confirming results of other investigators. In addition, however, the insulin secretory dynamics and ultrastructural morphometrics were investigated. It was found that GH-treated islets demonstrated increased insulin release during acute glucose stimulation when expressed as microunits per islet per minute. However, when insulin release during acute glucose stimulation was expressed as microunits per microgram of DNA per minute to compensate for the increased DNA content of GH-treated islets, no change in insulin release was observed compared to control islets. When GH-treated islets were perifused with a linear glucose gradient, the insulin secretory response was suppressed as indicated by changes in the threshold level, plateau level, and half-maximal response. Ultrastructural morphometric data showed that the average beta-cell volume in control and GH-treated islets was the same, eliminating the possibility that beta-cell hypertrophy occurred. Similarly, the nuclear volumes of the beta cells in control and GH-treated islets remained unchanged. This finding coupled with the observed increased DNA content and [3H]thymidine incorporation suggests that GH functions by increasing cell multiplication within the islets and not by inducing polyploidy. Finally, the volumes of cytoplasmic organelles in control and GH-treated islets were the same indicating that cytodifferentiation did not occur.  相似文献   

9.
Insulin from the principal islets of the teleost fish, Cottus scorpius (daddy sculpin), has been isolated and sequenced. Purification involved acid/alcohol extraction, gel filtration, and reverse-phase high-performance liquid chromatography to yield nearly 1 mg pure insulin/g wet weight islet tissue. Biological potency was estimated as 40% compared to porcine insulin. The sculpin insulin crystallised in the absence of zinc ions although zinc is known to be present in the islets in significant amounts. Two other hormones, glucagon and pancreatic polypeptide, were copurified with the insulin, and an N-terminal sequence for pancreatic polypeptide was determined. The primary structure of sculpin insulin shows a number of sequence changes unique so far amongst teleost fish. These changes occur at A14 (Arg), A15 (Val), and B2 (Asp). The B chain contains 29 amino acids and there is no N-terminal extension as seen with several other fish. Presumably as a result of the amino acid substitutions, sculpin insulin does not readily form crystals containing zinc-insulin hexamers, despite the presence of the coordinating B10 His.  相似文献   

10.
The purpose of this study was to assess whether Sertoli's cells would improve functional performance of homologous pancreatic islets within microcapsules. Purified rat Sertoli's cells were co-enveloped with islets in microcapsules that had been fabricated with alginic acid and poly-L-ornithine. Confocal laser microscopy was used to determine any mitogenic effects of Sertoli's cells on islets beta-cells. Insulin secretion from islets, with or without Sertoli's cells, was examined, and grafts of Sertoli's cells with islets in microcapsules into diabetic mice were carried out. Co-incubation of Sertoli's cells with islets resulted in a significant increase in the islet beta-cell mitotic rate, which was coupled with significantly higher insulin release under glucose stimulation, as compared to controls. Grafts of co-microencapsulated Sertoli's cells with islets resulted in prolongation of the achieved normoglycemia in the animals receiving Sertoli's cells with islets as compared to controls that received islets only. Sertoli's cells do promote mitogenic activities upon in vitro co-incubation with islets, whose in vitro functional and in vivo post-transplant consequences were evident. Sertoli's cells could, therefore, be co-microencapsulated with islets for transplantation in diabetic recipients.  相似文献   

11.
The local synthesis of dopamine and its effects on insulin release have been described in isolated islets. Thus, it may be accepted that dopamine exerts an auto-paracrine regulation of insulin secretion from pancreatic beta cells. The aim of the present study is to analyze whether dopamine is a regulator of the proliferation and apoptosis of rat pancreatic beta cells after glucose-stimulated insulin secretion. Glucose stimulated pancreatic islets obtained from male Wistar rats were cultured with 1 or 10 μM dopamine from 1 to 12 h. Insulin secretion was analyzed by RIA. The cellular proliferation rate of pancreatic islets and beta cells was studied with immunocytochemical double labelling for both insulin and PCNA (proliferating cell nuclear antigen), and active caspase-3 was detected to evaluate apoptosis. The secretion of insulin from isolated islets was significantly inhibited (p<0.01), by treatment with 1 and 10 μM dopamine, with no differences between either dose as early as 1 h after treatment. The percentage of insulin-positive cells in the islets decreased significantly (p<0.01) after 1 h of treatment up to 12 h. The proliferation rate of insulin-positive cells in the islets decreased significantly (p<0.01) following treatment with dopamine. Apoptosis in pancreatic islets and beta cells was increased by treatment with 1 and 10 μM dopamine along 12 h. In conclusion, these results suggest that dopamine could modulate the proliferation and apoptosis of pancreatic beta cells and that dopamine may be involved in the maintenance of pancreatic islets.  相似文献   

12.
Islets of Langerhans from isogeneic donor rats were transplanted directly into the hepatic parenchyma of recipients which had been made severely diabetic by streptozotocin (glycaemia ranging between 400 and 1090 mg%). Complete control lasting up to 13 months was achieved in 65% of recipients by using 600-800 islets. Following intravenous glucose administration, each rat responded similarly to normal rats with a rapid but reduced release of insulin. Cytoimmunofluorescence and electron microscopic studies demonstrated the presence of both functional insulin and glucagon cells, within the transplanted islets. It is suggested that for various reasons direct intrahepatic transplantation might become the preferred method for islets.  相似文献   

13.
Mice were subjected to gastrectomy (GX) or sham operation (controls). Four to six weeks later the pancreatic islets were isolated and analysed for cAMP or alternatively incubated in a Krebs-Ringer based medium in an effort to study insulin secretion and cAMP accumulation in response to glucose or the adenylate cyclase activator forskolin. Freshly isolated islets from GX mice had higher cAMP content than islets from control mice, a difference that persisted after incubation for 1 h at a glucose concentration of 4 mmol/l. Addition of forskolin to this medium induced much greater cAMP and insulin responses in islets from GX mice than in islets from control mice. In contrast, the insulin response to high glucose (16.7 mmol/l) was much weaker in GX islets than in control islets. Glucose-induced insulin release was associated with a 2-fold rise in the cAMP content in control islets. Surprisingly no rise in cAMP was noted in GX islets incubated at high glucose. Capacitance measurements conducted on isolated insulin cells from GX mice revealed a much lower exocytotic response to a single 500 ms depolarisation (from -70 mV to zero) than in control insulin cells. Addition of cAMP to the cytosol enhanced the exocytotic response in insulin cells from control mice but not from GX mice. The depolarisation-triggered inward Ca(2+) current in insulin cells from GX mice did not differ from that in control mice, and hence the reduced exocytotic response following GX cannot be ascribed to a decreased Ca(2+) influx. Experiments involving a train of ten 500 ms depolarisations revealed that the exocytotic response was prominent in control insulin cells but modest in GX insulin cells. It seems that cAMP is capable of eliciting insulin release from insulin cells of GX mice only when cAMP is generated in a specific microdomain conceivably through the intervention of membrane-associated adenylate cyclases that can be activated by forskolin. The GX-evoked impairment of depolarisation-induced exocytosis and glucose-stimulated insulin release may reflect the lack of a gastric agent that serves to maintain an appropriate insulin response to glucose and an appropriate exocytotic response to depolarisation by raising cAMP in a special glucose-sensitive compartment possibly regulated by a soluble adenylate cyclase.  相似文献   

14.
Transplantation of encapsulated porcine islets is proposed to treat type 1 diabetes. However, the envelopment of fibrous tissue and the infiltration of immune cells impair islet function and eventually cause implant failure. It is known that hemodialysis using an ethylene vinyl alcohol (EVOH) membrane results in minor tissue responses. Therefore, we hypothesized that using a low‐adhesive EVOH membrane for encapsulation may prevent host cell accumulation and fibrous capsule formation. In this study, rat islets suspended in chitosan gel were encapsulated in bags made from highly porous EVOH membranes, and their in vitro insulin secretion function as well as in vivo performance was evaluated. The results showed that the EVOH bag did not affect islet survival or glucose‐stimulated insulin secretion. Whereas naked islets were dysfunctional after 7 days of culture in vitro, islets within the EVOH bag produced insulin continuously for 30 days. Streptozotocin‐induced diabetic mice were given islets–chitosan gel–EVOH implants intraperitoneally (650–800 islets equivalent) and exhibited lower blood glucose levels and regained body weight during a 4‐week observation period. The transplanted mice had higher levels of serum insulin and C‐peptide, with an improved blood glucose disappearance rate. Retrieved implants had minor tissue adhesion, and histology showed a limited number of mononuclear cells and fibroblasts surrounding the implants. No invasion of host cells into the EVOH bags was noticed, and the encapsulated islets were intact and positive for insulin–glucagon immunostaining. In conclusion, an EVOH bag can protect encapsulated islets, limit fibrous capsule formation, and extend graft function.  相似文献   

15.
Pituitary adenylate cyclase activating peptide (PACAP) is a ubiquitously distributed neuropeptide which also is localized to pancreatic islets and stimulates insulin secretion. We examined whether endogenous PACAP within the islets might contribute to glucose-stimulated insulin secretion by immunoneutralizing endogenous PACAP. Immunocytochemistry showed that PACAP immunoreactivity is expressed in nerve terminals within freshly isolated rat islets, but not in islets that had been cultured for 48 h. In contrast, islet endocrine cells did not display PACAP immunoreactivity. Addition of either of two specific PACAP antisera markedly inhibited glucose (11.1 mmol/l)-stimulated insulin secretion from freshly isolated rat islets, whereas a control rabbit serum did not affect glucose-stimulated insulin secretion. In contrast, the PACAP antisera had no effect on glucose-stimulated insulin secretion in cultured islets. Based on these results we therefore suggest that PACAP is an islet neuropeptide which is required for the normal insulinotropic action of glucose.  相似文献   

16.
Isolated islets are important tools in diabetes research and are used for islet transplantation as a treatment for type 1 diabetes. Yet these cell clusters have a dramatic diffusion barrier that leads to core cell death. Computer modeling has provided theoretical size limitations, but little has been done to measure the actual rate of diffusion in islets. The purpose of this study was to directly measure the diffusion barrier in intact human islets and determine its role in restricting insulin secretion. Impeded diffusion into islets was monitored with fluorescent dextran beads. Dextran beads of 10-70 kDa failed to diffuse into the core of the intact islets, while 0.9 kDa probe was observed within the core of smaller islets. Diffusion of the fluorescent form of glucose, 2-NBDG, had similar diffusion limitations as the beads, with an average intra-islet diffusion rate of 1.5 ± 0.2 μm/min. The poor diffusion properties were associated with core cell death from necrosis, not apoptosis. Short-term exposure to a mild papain/0 Ca2+ cocktail, dramatically reduced the diffusion barrier so that all cells within islets were exposed to media components. Lowering the diffusion barrier increased the immediate and long-term viability of islet cells, and tended to increase the amount of insulin released, especially in low glucose conditions. However, it failed to improve the large islet's glucose-stimulated insulin secretion. Thus, the islet diffusion barrier leads to low viability and poor survival of large islets, but is not solely responsible for the reduced insulin secretion of large isolated islets.  相似文献   

17.
18.
Zinc is a key component of several proteins, interacting with the pancreatic hormones insulin and amylin. The role of zinc in insulin oligomerization and crystallinity is well established, although the effects of dietary zinc restriction on both energetic metabolism and β-pancreatic hormonemia and morphology remain unexplored. Here we report the effects of dietary zinc restriction on the endocrine pancreas and metabolic phenotype of mice. Nontransgenic male Swiss mice were fed a low-zinc or control diet for 4 weeks after weanling. Growth, glycemia, insulinemia and amylinemia were lower and pancreatic islets were smaller in the intervention group despite the preserved insulin crystallinity in secretory granules. We found strong immunostaining for insulin, amylin and oligomers in apoptotic pancreatic islet. High production of β-pancreatic hormones in zinc-restricted animals counteracted the reduced islet size caused by apoptosis. These data suggest that zinc deficiency is sufficient to promote islet β-cell hormonal disruption and degeneration.  相似文献   

19.
A tyrosine phosphatase-like protein, IA-2, is a major autoantigen in Type 1 diabetes but its role in islet function is unclear. Tyrosine phosphorylation mediates regulation of cellular processes such as exocytosis, cell growth, and cell differentiation. To investigate the potential involvement of IA-2 in islet differentiation and insulin secretion, we analyzed by immunohistochemistry expression of IA-2 during islet development in fetal rats and during the maturation of insulin secretory responses after birth. In the fetus, IA-2 immunoreactivity was detected in primitive islets positive for insulin and glucagon at 12 days' gestation. Subsequently, IA-2 was only weakly detectable in the fetal pancreas. In neonatal rat, a progressive increase in IA-2 immunoreactivity was observed in islets from very low levels at 1 day of age to moderate labeling at 10 days. In the adult, relatively high levels of IA-2 were detected in islets, with heterogeneous expression in individual cells within each islet. IA-2 marks a population of endocrine cells that transiently appear early in pancreatic ontogeny. Islet IA-2 expression reappears after birth concomitant with the development of mature insulin secretory responses, consistent with a role for this protein in regulated hormone secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号