首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In order to examine the biosynthesis, interconversion, and degradation of purine and pyrimidine nucleotides in white spruce cells, radiolabeled adenine, adenosine, inosine, uracil, uridine, and orotic acid were supplied exogenously to the cells and the overall metabolism of these compounds was monitored. [8‐14C]adenine and [8‐14C]adenosine were metabolized to adenylates and part of the adenylates were converted to guanylates and incorporated into both adenine and guanine bases of nucleic acids. A small amount of [8‐14C]inosine was converted into nucleotides and incorporated into both adenine and guanine bases of nucleic acids. High adenosine kinase and adenine phosphoribosyltransferase activities in the extract suggested that adenosine and adenine were converted to AMP by these enzymes. No adenosine nucleosidase activity was detected. Inosine was apparently converted to AMP by inosine kinase and/or a non‐specific nucleoside phosphotransferase. The radioactivity of [8‐14C]adenosine, [8‐14C]adenine, and [8‐14C]inosine was also detected in ureide, especially allantoic acid, and CO2. Among these 3 precursors, the radioactivity from [8‐14C]inosine was predominantly incorporated into CO2. These results suggest the operation of a conventional degradation pathway. Both [2‐14C]uracil and [2‐14C]uridine were converted to uridine nucleotides and incorporated into uracil and cytosine bases of nucleic acids. The salvage enzymes, uridine kinase and uracil phosphoribosyltransferase, were detected in white spruce extracts. [6‐14C]orotic acid, an intermediate of the de novo pyrimidine biosynthesis, was efficiently converted into uridine nucleotides and also incorporated into uracil and cytosine bases of nucleic acids. High activity of orotate phosphoribosyltransferase was observed in the extracts. A large proportion of radioactivity from [2‐14C]uracil was recovered as CO2 and β‐ureidopropionate. Thus, a reductive pathway of uracil degradation is functional in these cells. Therefore, white spruce cells in culture demonstrate both the de novo and salvage pathways of purine and pyrimidine metabolism, as well as some degradation of the substrates into CO2.  相似文献   

2.
Summary The labelling of nucleic acids of growing cells of the blue-green algae Anacystis nidulans and Synechocystis aquatilis by radioactive precursors has been studies. A. nidulans cells most actively incorporate radioactivity from [2-14C]uracil into both RNA and DNA, while S. aquatilis cells incorporate most effectively [2-14C]uracil and [2-14C]thymine.Deoxyadenosine does not affect incorporation of label from [2-14C]thymidine into DNA, but weakly inhibits [2-14C]thymine incorporation into both nucleic acids and significantly suppresses the incorporation of [2-14C]uracil.The radioactivity from [2-14C]uracil and [2-14C]thymine is found in RNA uracil and cytosine and DNA thymine and cytosine. The radioactivity of [2-14C]thymidine is incorporated into DNA thymine and cytosine. These results and data of comparative studies of nucleic acid labelling by [2-14C]thymine and [5-methyl-14C]thymine suggest that the incorporation of thymine and thymidine into nucleic acids of A. nidulans and S. aquatilis is accompanied by demethylation of these precursors. In this respect blue-green algae resemble fungi and certain green algae.  相似文献   

3.
The effects of various exogenous nucleic acid compounds on the viability and cell composition of Bdellovibrio bacteriovorus starved in buffer were measured. In decreasing order of effectiveness, these compounds were found to decrease the rate of loss of viability and the loss of cell carbon, cell ribonculeic acid, and cell protein: glutamate > ribonucleoside monophosphates > ribonucleosides > deoxyribonucleoside monophosphates. Similar sparing effects were not observed with nucleic acid bases, deoxyribonucleosides, ribose, ribose-5-phosphate, deoxyribose, and deoxyribose-5-phosphate. Appreciable increases in the respiration rate over the endogenous rate did not occur when cell suspensions were incubated with individual or mixtures of nucleic acid compounds. Formation of 14CO2 by cell suspensions incubated with carbon 14-labeled nucleic acid compounds indicated ribonucleosides and ribonucleoside monophosphates were respired and to a small extent, were incorporated into cell material of non-growing cells. The respired 14CO2 was derived mainly from the ribose portion of these molecules. No respired 14CO2 or incorporated carbon 14 was found with bdellovibrios incubated with other nucleic acid compounds tested, including free ribose. During growth of B. bacteriovorus on Escherichia coli in the presence of exogenous UL-14C-ribonucleoside monophosphates, 10–16% of the radioactivity was in the respired CO2 and of the radioactivity incorporated into the bdellovibrios, only 40 to 50% resided in the cell nucleic acids. However, during growth on 14C-adenine,-uracil, or-thymidine labeled E. coli, only trace amounts of 14CO2 were found and 90% or more of the incorporated radioactivity was in the bdellovibrio nucleic acids. It is concluded that bdellovibrio can use ribonucleoside monophosphates during growth and starvation as biosynthetic precursors for synthesis of both nucleic acids and other cell materials as well as catabolizing the ribose portion for energy purposes.Abbreviations HM buffer 5 mM N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid (pH 7.6) containing 0.1 mM CaCl2 and MgCl2 - DNA deoxyribonucleic acid - RNA ribonucleic acid - Ar, Cr, Gr, Ur ribonucleosides of adenine, cytosine, guanine, uracil, respectively - dTr deoxythymidine - AMP, CMP, GMP, UMP ribonucleoside monophosphates of adenine, cytosine, guanine, and uracil, respectively - dTMP deoxythymidine monophosphate - ATP adenosine triphosphate - PFU plaque-forming units  相似文献   

4.
Pyrimidine metabolism was investigated at various stages ofsomatic embryo development of white spruce (Picea glauca). The contribution of thede novo and the salvage pathways of pyrimidine biosynthesis to nucleotide and nucleic acid formation and the catabolism of pyrimidine was estimated by the exogenously supplied [6-14C]orotic acid, an intermediate of thede novo pathway, and with [2-14C]uridine and [2-14C]uracil, substrates of the salvage pathways. Thede novo pathway was very active throughout embryo development. More than 80 percnt; of [6-14C]orotic acid taken up by the tissue was utilized for nucleotide and nucleic acid synthesis in all stages of this process. The salvage pathways of uridine and uracil were also operative. Relatively high nucleic acid biosynthesis from uridine was observed, whereas the contribution of uracil salvage to the pyrimidine nucleotide and nucleic acid synthesis was extremely limited. A large proportion of uracil was degraded as 14CO2, probably via β-ureidopropionate. Among the enzymes of pyrimidine metabolism, orotate phosphoribosyltransferase was high during the initial phases of embryo development, after which it gradually declined. Uridine kinase, responsible for the salvage of uridine, showed an opposite pattern, since its activity increased as embryos developed. Low activities of uracil phosphoribosyltransferase and non-specific nucleoside phosphotransferase were also detected throughout the developmental period. These results suggest that the flux of thede novo and salvage pathways of pyrimidine nucleotide biosynthesisin vivo is roughly controlled by the amount of these enzymes. However, changing patterns of enzyme activity during embryo development that were measuredin vitro did not exactly correlate with the flux estimated by the radioactive precursors. Therefore, other fine control mechanisms, such as the fluctuation of levels of substrates and/or effectors may also participate to the real control of pyrimidine metabolism during white spruce somatic embryo development.  相似文献   

5.
SYNOPSIS Radioactive uracil was not significantly incorporated into the nucleic acids of human fibroblast cells. Infection of these cells with Toxoplasma gondii resulted in an exponential increase in the rate of uracil incorporation that paralleled the exponential growth of the parasite. One day after infection the rate of uracil incorporation was increased 100-fold. It was established by autoradiography that all of the [3H] uracil was incorporated into the intracellular parasites. A possible explanation for this difference in ability to use uracil is our observation that the specific activity of uridine phosphorylase was 100-fold greater in partially purified parasites than in the host cell.  相似文献   

6.
Abstract

The oligodeoxynucleotide d(GCGUGCG) was synthesized with [1′,3′ -13C2)U labeling. The uracil unit was removed with uracil-DNA glycosylase to generate an abasic site and the resulting oligonucleotide was paired with the possible d(CGCNCGC) structures. One of these heteroduplexes was a substrate for W endonuclease V. The 13C NMR spectra of these heteroduplexes describe the structure of the abasic site and the mechanism of the endonuclease reaction.  相似文献   

7.
Based on different characteristics between unlabeled and fully 15N,13C-labeled nucleotides, we develop a method for unambiguous resonance assignments in nucleic acids following site-specific fully 15N,13C isotope incorporation at very low levels1. The J-couplings between heteronuclei provide for distinction between the NMR signals of the fully labeled nucleotides and those of the natural abundance nucleotides. The method is demonstrated for DNA oligonucleotides2, in the dimeric G-quadruplex [d(GGGTTCAGG)]2and in the 22-nucleotide human telomeric fragment d[AG3(TTAG3)3]. We expect this approach to be useful for selective monitoring of important functional domains and of their interactions in large nucleic acids.  相似文献   

8.
Water-soluble polyethyleneimine (PE) derivatives containing nucleic acid bases and hydrophilic amino acids such as homoserine (Hse) and serine were prepared by the activated ester method as nucleic acid models. From spectroscopic measurements, the polymers were found to interact with DNA accompanied by an induction of conformational change. Hypochromicity in UV spectra indicated that a stable polymer complex was formed between poly (A) with PEI-Hse-Ura by complementary hydrogen bonding with equimolar nucleic base units (adenine∶uracil=1∶1). The induced conformation of DNA by the interaction with the polymer containing uracil and homoserine (PEI-Hse-Ura) was concluded to be a super triple helical structure. The formation of the polymer complex, DNA:PEI-Hse-Ura, was found to be affected by the presence of metal ions such as Ca2+ and Cu2+.  相似文献   

9.
Six different variations of the extraction procedure applied to yeast cells of Saccharomyces cerevisiae and Candida utilis to optimize the production of yeast extract and isolation of nucleic acids were compared. The autolysis of C. utilis at 50 to 52°C without adding chemical agents was found to be the best for the production of yeast extract. The most suitable procedures used for the extraction of nucleic acids were those which were carried out from C. utilis at pH 7.5 (92°C) and the other with 0.4 M NH4OH (40°C). Both these modifications yielded the highest amounts of polymer nucleic acids. Applying all procedures compared to S. cerevisiae an increased content of sterols (including Δ5.7-sterols, predominantly ergosterol) was detected.  相似文献   

10.
Summary Uracil transport inSaccharomyces cerevisiae is mediated by a specific permease which does not recognize other pyrimidines such as uridine, cytosine, thymine, 2-hydroxypyrimidine or 5-amino-uracil; hypoxanthine and 6-amino-uracil slightly inhibit the uptake of uracil in a strain lacking cytosine permease activity. Wild type cells concentrate extracellular uracil before its transformation into UMP and subsequent incorporation into nucleic acids. A strain lacking UMP pyrophosphorylase and uridine ribohydrolase (strainfur 1–8 rh, in which the endogenous production as well as the utilization of uracil are lacking) is able to concentrate14C-2 uracil from the medium. At the same time no other14C-2 labelled compound could be detected in this strain, thus suggesting that the uptake of uracil in yeast occurs by active transport which is not coupled to the UMP pyrophosphorylase. The optimal pH of uracil uptake in standard growth conditions was 4.3. It was deduced from experiments performed on strainfur 1–8 rh with3H-5 and14C-2 uracil that the intracellular pool of uracil is recycled once the steady-state has been reached. First order kinetics with similar rate constants were observed for uracil efflux in strainfur 1–8 rh (k min–1=0.75±0.08) as well as in the strain lacking uracil permease,fur 1–8 rh fur 4–6 (k min–1=0.60±0.08). The intracellular pool of14C-2 uracil can be chased in strainfur 1–8 rh by addition of3H uracil without inducing a large initial acceleration of the exit rate (the rate constant remained at 0.60). 2-4-dinitrophenol inhibits the uptake of uracil but also reduces the efflux of uracil in strainfur 1–8 rh fur 4–6. These data and the comparison with cytosine transport in the same organism support the hypothesis that, whereas uracil uptake is a permease mediated active transport, the efflux of uracil does not involve the uracil uptake permease. A coefficient of permeability of 7.4×10–7 cm sec–1 was calculated for uracil.  相似文献   

11.
The interaction of the fluorinated antimalarial drug fluoroquine [7-fluoro-4-(diethyl-amino-1-methylbutylamino)quinoline] with DNA, tRNA, and poly(A) has been investigated by optical absorption, fluorescence, and 19F-nmr chemical-shift and relaxation methods. Optical absorption and fluorescence experiments indicate that fluoroquine binds to nucleic acids in a similar manner to that of its well-known analog chloroquine. At low drug-to-base pair ratios, binding of both drugs appears to be random. Fluoroquine and chloroquine also elevate the melting temperature (Tm) of DNA to a comparable extent. Binding of fluoroquine to DNA, tRNA, or poly(A) results in a downfield shift of about 1.5 ppm for the 19F-nmr resonance. The chemical shift of free fluoroquine depends on the isotopic composition of the solvent (D2O vs H2O). The solvent isotope shift is virtually eliminated by fluoroquine binding to any one of the nucleic acids. 19F-nmr relaxation experiments were carried out to measure the spin-lattice relaxation time (T1), 19F{1H} nuclear Overhauser effect (NOE), off-resonance intensity ratio (R), off-resonance rotating-frame spin-lattice relaxation time (T), and linewidth for fluoroquine in the nucleic acid complexes. By accounting for intramolecular proton-fluorine dipolar and chemical-shift anisotropy contributions to the fluorine relaxation, all of the relaxation parameters for the fluoroquine–DNA complex can be well described by a motional model incorporating long-range DNA bending on the order of a microsecond and an internal motion of the drug on the order of a nanosecond. Selective NOE experiments indicate that the fluorine in the drug is near the ribose protons in the RNA complexes, but not in the DNA complex. Details of the binding evidently differ for the two types of nucleic acids. This study provides the foundation for an investigation of fluoroquine in intact cells.  相似文献   

12.
Abstract

We have examined some subtle parameter modifications to the Cornell et al. force field, which has proven quite successful in reproducing nucleic acid properties, but whose C2′-endo sugar pucker phase and helical repeat for B DNA appear to be somewhat underestimated. Encouragingly, the addition of a single V2 term involving the atoms C(sp3)-O-(sp3)-C(sp3)- N(sp2), which can be nicely rationalized because of the anomeric effect (lone pairs on oxygen are preferentially oriented relative to the electron withdrawing N), brings the sugar pucker phase of C2′-endo sugars to near perfect agreement with ab initio calculations (W near 162°). Secondly, the use of high level ab initio calculations on entire nucleosides (in contrast to smaller model systems necessitated in 1994–95 by computer limitations) lets one improve the % torsional potential for nucleic acids. Finally, the O(sp3)-C(sp3)- C(sp3)-O(sp3) V2 torsional potential has been empirically adjusted to reproduce the ab initio calculated relative energy of C2′- endo and C3′-endo nucleosides. These modifications are tested in molecular dynamics simulations of mononucleosides (to assess sugar pucker percentages) and double helices of DNA and RNA (to assess helical and sequence specific structural properties). In both areas, the modified force field leads to improved agreement with experimental data.  相似文献   

13.
BackgroundCell-penetrating peptides (CPPs) have been extensively exploited in gene therapy approaches as vectors for intracellular delivery of bioactive molecules. The ability of CPPs to be internalized into cells and their capacity to complex nucleic acids depend on their molecular structure, both primary and secondary, namely regarding hydrophobicity/hydrophilicity. CPP acylation has been used as a strategy to improve this structural feature.MethodsAcyl groups (from 6 to 18 carbon atoms) were attached to the S413-PV peptide and their effects on the peptide competence to complex siRNAs and to mediate gene silencing in glioblastoma (GBM) cells were studied. A systematic characterization of membrane interactions with S413-PV acyl-derivatives was also conducted, using different biophysical techniques (surface pressure-area isotherms in Langmuir monolayers, DSC and 31P NMR) to unravel a relationship between CPP biological activity and CPP effects on membrane stability and lipid organization.ResultsA remarkable concordance was noticed between acylated-S413-PV peptide competence to promote gene silencing in GBM cells and disturbance induced in membrane models, the lauroyl- and myristoyl-S413-PV peptides being the most effective. A cut-off effect was described for the first time regarding the influence of acyl-chain length on CPP bioactivity.ConclusionsC12-S413-PV showed high capacity to destabilize lipid bilayers, to escape from lysosomal degradation and to mediate gene silencing without promoting cytotoxicity.General significanceBesides unraveling a new CPP with high potential to be employed as a gene delivery vector, this work emphasizes the benefit from allying biophysical and biological studies towards a proper CPP structural refinement for successful pre-clinical/clinical application.  相似文献   

14.
Abstract

DNA mimics representing negatively charged analogues of peptide nucleic acids (PNAs), particularly hetero-oligomers constructed from alternating phosphono-PNA residues (pPNA) and monomers on the base of trans-4-hydroxy-L-proline (HypNA) as well as mimics composed of phosphono-HypNA monomers (pHypNA) were tested in a set of in vitro and in vivo assays, and they demonstrated a high potential for the use in nucleic acid based diagnostic, isolation of nucleic acids and antisense experiments.  相似文献   

15.
16.
17.
Eva Melzer  Marion H. O'Leary 《Planta》1991,185(3):368-371
In a previous study (Melzer and O'Leary, 1987, Plant Physiol. 84, 58–60), we used isotopic methods to show that a substantial fraction of protein-bound aspartic acid in tobacco is derived from anaplerotic synthesis via phosphoenolpyruvate (PEP) carboxylase. Similar studies in soybean (Glycine max L.) and spinach (Spinacia oleracea L.) showed a similar pattern, and this pattern persists with age because of slow protein turnover. A more quantitative analysis indicates that about 40% of protein-bound aspartate is derived in this manner. Analyses of free aspartic and malic acids show that contribution of PEP carboxylase to the synthesis of these acids decreases with increasing age. The C4 plant Zea mays L. did not show this pattern.Abbreviations and Symbols RuBP ribulose bisphosphate - PEP phosphoenolpyruvate - OAA oxaloacetic acid - PGA 3-phosphoglyceric acid - 13C carbon-13 - isotopic content [R(sample)/R(standard)-1] × 1000, where R = [13CO2]/[12CO2] This work was supported by contract DE-ACO2-83ER 13076 and grant DE-FGO2-86ER13534 from the U.S. Department of Energy. E. M. was supported by a fellowship from Deutsche Forschungsgemeinschaft. We are grateful to Isabel Treichel for assistance with isotopic analyses.  相似文献   

18.
Abstract

Guanine-rich polynucleotides such as poly(dG), oligo(dG)12–18 or poly(rG) were shown to exert a strong inhibitory effect on vimentin filament assembly and also to cause disintegration of preformed filaments in vitro. Gold-labeled oligo(dG)25 was preferentially localized at the physical ends of the aggregation and disaggregation products and at sites along filaments with a basic periodicity of 22.7 nm. Similar effects were observed with heat-denatured eukaryotic nuclear DNA or total rRNA although these nucleic acids could affect filament formation and structure only at ionic strengths lower than physiological. However, whenever filaments were formed or stayed intact, they appeared associated with the nucleic acids. These electron microscopic observations were corroborated by sucrose gradient analysis of complexes obtained from preformed vimentin filaments and radioactively labeled heteroduplexes. Among the duplexes of the DNA type, particularly poly(dG)·poly(dC), and, of those of the RNA type, preferentially poly(rA)·poly(rU), were carried by the filaments with high efficiency into the pellet fraction. Single-stranded 18S and 28S rRNA interacted only weakly with vimentin filaments. Nevertheless, in a mechanically undisturbed environment, vimentin filaments could be densely decorated with intact 40S and 60S ribosomal subunits as revealed by electron microscopy. These results indicate that, in contrast to single-stranded nucleic acids with their compact random coil configuration, double-stranded nucleic acids with their elongated and flexible shape have the capability to stably interact with the helically arranged, surface-exposed amino-terminal polypeptide chains of vimentin filaments. Such interactions might be of physiological relevance in regard to the transport and positioning of nucleic acids and nucleoprotein particles in the various compartments of eukaryotic cells. Conversely, nucleic acids might be capable of affecting the cytoplasmic organization of vimentin filament networks through their filament-destabilizing potentials.  相似文献   

19.
A physiologically based pharmacokinetic (PBPK) model to simulate the plasma concentration and 13CO2 exhalation after [2-13C]uracil administration to DPD-suppressed dogs was developed. Simulation using this PBPK model should be useful in clinical situations where DPD-deficient patients at risk are to be detected with [2-13C]uracil as an in vivo probe.  相似文献   

20.
The observation of 2h J iso(N, N) coupling has prompted considerable interest in this phenomenon from experimentalists and theoreticians due to the potential these couplings hold for the determination of secondary and tertiary structure in biologically important molecules. Here, we present an ab initio (MCSCF) study of the complete 2h J(N, N) tensor for a model methyleneimine dimer system as a function of (i) the N-N separation, r NN, and (ii) the hydrogen bond angle, . This simple system models the 2h J(N, N) tensor of nucleic acid base pairs. Results indicate that although the Fermi-contact mechanism dominates 2h J iso(N, N), the coupling tensor is anisotropic due to contributions from the Fermi-contact spin-dipolar cross term. The variation in 2h J iso(N, N) as a function of r NN is fit to an exponential decay. The influence of on the coupling constant is less pronounced but must be considered if experimental coupling constants are to be used for quantitative structure determination. Our results for this simple model system demonstrate that 2h J iso(N, N) is a valuable probe of hydrogen bonding in nucleic acid base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号