首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The hair cell polarization of the various sensory epithelia in the inner ear was examined in two species of flatfish, the Plaice (Pleuronectes platessa) and the Dab (Limanda limanda). The hair cells in the macula utriculi are polarized in the pattern usually seen for this macula in vertebrates. In the macula sacculi and macula lagenae the hair cell polarization is different from that hitherto described from bony fishes and other vertebrates. The polarization seen in these maculae in the flatfish explains their ability to sense movements in all directions, which is necessary if these sensory areas are the most important inner ear organs in the regulation of postural orientation.  相似文献   

2.
3.
The macula sacculi and the macula lagenae of the herring, Clupea harengus L., were examined by light microscopy, the macula lagenae is large compared to what is normal among non-ostariophysan fishes, the morphological polarization of the hair cells in the inferior maculae shows a pattern which is similar to that usually seen in teleost fishes. The fibres in the nerves supplying the macula sacculi and the macula lagenae were counted and their diameters measured. The ramulus saccularis is divided in two separate ramuli innervating populations of hair cells with different morphological polarization. The saccular rostral nerve trunk contains 1800–2300 fibres, with 1300–1800 fibres in the caudal nerve trunk. The lagenar nerve is composed of 2100–4000 fibres. The fibre diameters are 1–14 μm in all ramuli. Silver staining of the nerve axoplasm reveals a unique differentiation of the maculae, which can be divided into a central area surrounded by a peripheral part. The hair cells in the central area are innervated by thick nerve fibres (5–14 μm diameter) as well as a few thin nerve fibres (about 1 μm diameter), while the receptor cells in the peripheral area are exclusively innervated by thin fibres having diameters of 2 μm or less.  相似文献   

4.
The utricular macula in the inner ear was examined in two turtle, two lacertilian, two snake and one crocodilian species. The orientation of hair cells was found to be similar to the general pattern for this macula described previously from fish to mammals. The calyceal hair cells, characterized by their embracing afferent nerve endings, are distributed in a single belt running parallel with the anterior and lateral borders of the macula in the examined reptiles.
The number of hair cells in a large number of calyces was counted for some of the examined reptile species, and the total number of hair cells calculated in two specimens of a turtle, crocodile and snake utricular macula. In the turtle and snake maculae, the calyceal hair cells form about 10% of the total hair cell number, while the crocodiles, which were very young, only had 2% calyceal hair cells. The total number of hair cells was found to be much higher in the crocodiles than in the other reptiles examined. The presented data, as well as data from the literature of the avian and mammalian inner ear, indicate that the number of this very sensitive hair cell type in the utricular macula is independent of locomotion type.  相似文献   

5.
The papillae basilares of 12 species of lizards from seven different families were studied by SEM. The iguanids, Sceloporus magister and S. occidentalis, have typical “iguanid type” papillae with central short-ciliated unidirectional hair cell segments and apical and basal long-ciliated bidirectional hair cell segments. These species of Sceloporus are unique among iguanids in that the bidirectional segments consist of but two rows of hair cells. The agamids, Agama agama and Calotes nigrolabius, have an “agamid-anguid type” papilla consisting of an apical short-ciliated unidirectional hair cell segment and a longer basal bidirectional segment. Agama agama is unusual in having a few long-ciliated hair cells at the apical end of the apical short-ciliated segment. The agamid, Uromastix sp., has an “iguanid type” papilla with a central short-ciliated unidirectional segment and apical and basal bidirectional segments. The anguid, Ophisaurus ventralis, has an “iguanid” papillar pattern with the short-ciliated segment centrally located. All the short-ciliated hair cells of the above species are covered by a limbus-attached tectorial network or cap and the long-ciliated hair cells, only by loose tectorial strands. The lacertids, Lacerta viridis and L. galloti, have papillae divided into two separate segments. The shorter apical segment consists of opposingly oriented, widely separated short-ciliated cells covered by a heavy tectorial membrane. The apical portion of the longer basal segment consists of unidirectionally oriented hair cells, while the greater part of the segment has opposingly oriented hair cells. The xantusiids, Xantusia vigilis and X. henshawi, have papillae made up of separate small apical segments and elongated basal segments. The apical hair cells are largely, but not exclusively, unidirectional and are covered by a heavy tectorial cap. The basal strip is bidirectional and the hair cells are covered by sallets. The kinocilial heads are arrowhead-shaped. The papilla of the cordylid, Cordylus jonesii, is very similar to that of Xantusia except that the apical segment is not completely separated from the basal strip. The papilla of the Varanus bengalensis is divided into a shorter apical and a longer basal segment. The hair cells of the entire apical and the basal three quarters of the basal segment are opposingly oriented, not with reference to the midpapillary axis but randomly to either the neural or abneural direction. The apical quarter of the basal segment contains unidirectional, abneurally oriented hair cells. The entire papilla is covered by a dense tectorial membrane. The functional correlations of the above structural variables are discussed.  相似文献   

6.
The inner ears of a few fishes in the teleost superorder Ostariophysi are structurally unlike those of most other teleosts. Scanning electron microscopy was used to determine if other ostariophysans share these unusual features. Examined were the families Cyprinidae, Characidae, and Gymnotidae (all of the series Otophysi), and Chanidae (of the sister series Anotophysi), representing the four major ostariophysan lineages, the auditory organs of which have not yet been well described. Among the Otophysi, the saccular and lagenar otolith organs are similar to those reported for other ostariophysans. The lagena is generally the larger of the two organs. The saccular sensory epithelium (macula) contains long ciliary bundles on the sensory hair cells in the caudal region, and short bundles in the rostral region. The saccule and the lagena each have hair cells organized into two groups having opposing directional orientations. In contrast, Chanos, the anotophysan, has a saccular otolith larger than the lagenar otolith, and ciliary bundles that are more uniform in size over most of its saccular macula. Most strikingly, its saccular macula has hair cells organized into groups oriented in four directions instead of two, in a pattern very similar to that in many nonostariophysan teleosts. We suggest that the bi-directional pattern seen consistently in the Otophysi is a derived development related to particular auditory capabilities of these species.  相似文献   

7.
Summary Scanning electron microscopy revealed two types of hair cells in the sacculus of an amphibian, the mudpuppy (Necturus maculosus). Both types were surrounded by microvilli-covered sustentacular cells. The peripheral hair cells have shorter, thinner stereocilia and longer kinocilia than the hair cells in the central macula. The hair cells generally were found to be oriented with their stereocilia gradient directed toward the periphery of the macula. A nearly semicircular stria separated those directed forward and outward from those directed rearward and outward. Two basic types of otoconia were found in the otolith, and X-ray analysis revealed the entire otolith to be composed of aragonite.We would like to thank Dean E. Hillman for suggestions regarding fixation and interpretation, R. Eric Lombard for assistance with amphibian morphology and for helpful discussions during the course of this work, H. R. Wenk for performing X-ray analysis of otolith and Sister Loretta Shimondle for technical assistance. Research sponsored by the National Science Foundation Grant GK-3845 and the United States Public Health Service Grant GM-17523.  相似文献   

8.
The inner ear of the skate, Raja ocellata, was examined by scanning electron microscopy. The otolithic membranes have a gelatinous component and an endogenous class of otoconia. Cupulae are reticulate in form. The morphology and polarization of sensory cell hair bundles are described for the various regions of the labyrinth, and are compared with published observations on other species. In the otolithic maculae, the more centrally located receptor cells generally have longer sterecolia than the peripheral cells. The hair bundles of the lacinia are similar to those of the central portion of the sacculus and differed from those of the rest of the utricular macula. Hair bundles in the peripheral regions of all maculae and cristae are similar. The polarization pattern of the utriculus is similar to that of teleosts, while that of the lagena is less clearly dichotomized. The receptor cells of most of the sacculus are oriented in a bivertical direction, with cells in the anterior portion, and a few in the posterior region, being aligned longitudinally. The significance of morphology and polarization with respect to the functions of the otolithic organs is discussed. The relationship of cell processes of the ampullary receptors to the cupula is briefly considered.  相似文献   

9.
The inner ear of the caecilian Ichthyophis glutinosus is briefly described. An analysis of the fine structure of the utricular macula show the presence of several varieties of hair cells. At least one type seems to be degenerating, another developing. A slow hair cell turnover is proposed. The number of afferent nerve endings in contact with a few hair cells were found to be 6–13 as reconstructed from electron microscopical serial sectioning.  相似文献   

10.
The endorgans of the inner ear of the gar were examined using transmission and scanning electron microscopy as well as nerve staining. The ultrastructure of the sensory hair cells and supporting cells of the gar ear are similar to cells in other bony fishes, whereas there are significant differences between the gar and other bony fishes in the orientations patterns of the sensory hair cells on the saccular and lagenar sensory epithelia. The saccular sensory epithelium has two regions, a main region and a secondary region ventral to the main region. The ciliary bundles on the main region are divided into two groups, one oriented dorsally and the other ventrally. Furthermore, as a result of curvature of the saccular sensory epithelium, the dorsal and ventral ciliary bundles on the rostral portion of the epithelium are rotated ninety degrees and are thus oriented on the animal's rostro-caudal axis. Hair cells on the secondary region are generally oriented ventrally. The lagenar epithelium has three groups of sensory hair cells. The groups on the rostral and caudal ends of the macula are oriented dorsally, whereas the middle group is oriented ventrally. Hair cell orientations on the utricular epithelium and macula neglecta are similar to those in other bony fishes. Nerve fiber diameters can be divided into three size classes, 1-8 microns, 9-13 microns, and 14 microns or more, with the smallest size class containing the majority of fibers. The distribution of the various classes of fiber diameters is not the same in nerve branches to each of the end organs. Similarly, the ratio of hair cells to axons differs in each end organ. The highest hair cell to axon ratio is in the utricle (23:1) and the smallest is in the macula neglecta (7:1). The number of sensory hair cells far exceed the number of eighth nerve axons in all sensory epithelia.  相似文献   

11.
Nils Wegner 《Acta zoologica》1982,63(3):133-146
The macula lagenae of the anabantide fish Colisa labiosa was studied with light and transmission electron microscopy. (1) The sensory area is naturally divided in a central area (A) surrounded by a peripheral part (B). (2) Generally the central hair cells are separated by supporting cells, while the peripheral hair cells are found in groups. The cells of a group are not separated by supporting cells. (3) Tubuli-like structures, hexagonal in cross section, are found in all cells. In peripheral hair cells the longitudinally oriented tubuli-like structures are aggregated in thick bundles. (4) Variation in shape, electron density, stereocilia arrangement and size of mitochondria was found in different hair cells. (5) The central hair cells contain large accumulations of presynaptic bodies (10–44). Contrarily, the peripheral hair cells contain only a few pre-synaptic bodies (1–3). (6) The central hair cells are innervated by thick afferent (6–15 μm) and fine presumed efferent (less than 1 μm nerve fibres, while the peripheral hair cells are innervated by thin (1–6 μm) afferent nerve fibres only.  相似文献   

12.
Hyphessobrycon simulans has a Weberian apparatus for transmission of sound energy to the auditory organ, whereas Poecilia reticulata does not. The fine structure of the auditory organs is identical in the two species. The better hearing - expressed by large bandwidth and high sensitivity - typical of the Ostariophysi - seems to be based exclusively on the presence of the Weberian apparatus. The sensory epithelium of the saccule and the lagena is made up of hair (sensory) cells and supporting cells. The vertically orientated macula sacculi is divided into a dorsal and a ventral cell area with oppositely arranged hair-cell kinocilia. The sagitta takes up the center of the saccule and shows only three small sites with connections to the otolithic membrane. Remarkably, the dorsal sensory cells are connected to the ventral part of the otolith, but the ventral cells are connected to the dorsal part. The macula of the lagena also comprises a dorsal and a ventral cell area with oppositely arranged hair cells. The sensory cells in all maculae are of type II. They exhibit a striking apical cell protrusion, the cuticular villus. It is partially fused with the kinocilium in the contact zones and joined to the otolithic membrane. The cuticular villus probably stabilizes the long kinocilia.  相似文献   

13.
The occurrence of dark staining cells in different tissues has been suggested to be artefactual and caused during the fixation process. In inner ear sensory epithelia, dark hair cells (DHC) have been suggested to be apoptotic cells. We have examined whether dark cells represent dying cells or whether they are the results of fixation artefacts. The effects of buffer osmolarity and different fixation methods on the incidence of dark hair cells in the inner ear macula sacculi of the rainbow trout (Oncorhynchus mykiss) were investigated by light and electron microscopy. Glutaraldehyde in phosphate buffer with osmolarities of 0, 135, 225, 425, and 560 mosmol were used for fixation by immersion. For comparison, fixation by vascular perfusion as well as the effects of mechanical injury and delayed fixation were studied. DHC were found in all examined saccular maculae except for the delayed fixation protocol where almost all the sensory cells were lost. The number of DHC accounted for 2.5–12.9‰ of the sensory cells. Neither the buffer osmolarity nor the fixation method had significant effects on the frequencies of DHC. Mitotic cell division events were seen exclusively in the apical cell strata of the sensory epithelium. The DHC are suggested to be associated with apoptosis rather than fixation artefacts.  相似文献   

14.
15.
Ears from several species of carcharhinid sharks were studied by gross dissection, light microscopy, transmission electron microscopy, and scanning electron microscopy. Structures along a possible sound transmission path to the ear are described, but main consideration is given to the structure of the macula neglecta. The macula neglecta is composed of two patches of sensory epithelium which line part of the posterior canal duct. In an adult shark the larger of these contains 224,000 sensory hair cells oriented so as to detect forces directed posteroventrolaterally in the duct. The smaller patch contains 43,000 hair cells oriented so as to detect oppositely directed forces. These receptor cells project through numerous small terminals to a total for both patches of 4,700 myelinated nerve fibers. Cytostructural variations throughout the hair cell population are also reported. Estimated acoustic properties of the tissues in this complex and the processing potential of the neural elements are interpreted as suggestive of auditory function. A mechanism based on the geometry of the receptor arrays is proposed to explain behaviorally observed instantaneous sound localization from the farfield. Evolution of the macula neglecta is reviewed, and evidence for homology of the macula neglecta and amphibian papilla is presented.  相似文献   

16.
Summary The fine structure of the saccular macula of the gold fish has been studied by means of the electron microscope.The sensory epithelium of the macula consists of sensory cells and supporting cells. The surface of the sensory cell is studded with a group of sensory hairs consisting of one kino-cilium and 50–60 stereocilia. In the dorsal half of the macula, the kino-cilium is located at the dorsal end of the sensory hair group. In the ventral half of the macula, the kino-cilium is located at the ventral end of the sensory hair group. In the intermediary portion of the macula, the sensory cells with opposite polarities are situated side-by-side. The relation between the microphonic potential and the position of the kino-cilium has been discussed.Two types of nerve terminals are found situated on the basal surface of the receptor cells. The one contains no synaptic vesicle and the other contains a cluster of synaptic vesicles and a few cored vesicles. It is considered that the former corresponds to the afferent nerve terminal and the latter to the efferent one.This investigation was supported by NIH Grant NB-06052.The author is very grateful to Prof. Taro Furukawa, Osaka City University for his invaluable advice and discussion.  相似文献   

17.
Summary In Raja ocellata the macula neglecta is located in the posterior canal duct of the inner ear at the junction with the sacculus. The maximum length and width of a freeze-dried macula from a male skate of 61 cm width is 1035 m and 315 m respectively. Ultrastructural studies show that the hair cells of the macula are of two types. Orientation of hair cells is towards the periphery with a reverse direction of polarization in 5.0 to 6.5% of the cells. The axons of the associated nerve, the ramus neglectus, are myelinated, and include both efferent and afferent fibres.Electron-microscopic studies and quantitative analyses reveal significant sex differences in the macula neglecta and ramus neglectus. Hair cell and axon numbers, and total axon areas increase linearly with skate size, and are significantly different in males and females for any given representative size of skate, the females having the larger counts. Since the macula neglecta functions as a vibration detector of far-field localizations, the gender difference may be involved in the location of prey, or in mate detection. It is unknown whether such differences occur in any other vertebrate species.  相似文献   

18.
The morphological development of the vestibular maculae in the mouse was studied in order to identify elements that may determine how hair-bundle polarity is established. Utricles and saccules develop in parallel. Hair-bundles first appear at embryonic day (E) 13.5. They are initially not polarised and have a kinocilium located at the centre of the cell surface surrounded by stereocilia. Polarisation is rapidly established as the kinocilium becomes eccentrically positioned. The orientation of these polarised bundles is initially not random. It varies systematically across the maculae and the general orientation in utricles is the opposite of that in saccules. At E15.5, in both maculae, hair-bundle orientation angles fall into two populations that differ by approximately 180° defining a line of orientation reversal, the position of which varies little during subsequent maturation. Many more immature hair bundles appear at E15.5 suggesting a second wave of hair cell differentiation is initiated. Otoconial membrane is produced simultaneously across the entire width of both maculae, indicating directional growth of the overlying extracellular matrix is unlikely to influence hair-bundle orientation. Growth of both maculae occurs asymmetrically, essentially outwards from the striola, but it is most pronounced after orientation is defined. Microtubules are prominent in hair cells at the earliest stages of their differentiation, but are oriented parallel to the long axis of the cell and, thus, may not have a role in directing hair-bundle polarity. Microfilament assemblies that are aligned parallel to the apical surface and connect to the adherens junctions in supporting cells could provide a “framework” for hair-bundle orientation. The striated rootlets of ciliary centrioles that are aligned parallel to the cell surface with their tips associated with microfilament assemblies at adherens junctions were the only structural asymmetry identified that might influence the development of hair-bundle polarity.  相似文献   

19.
The inner ear of adult agnathan vertebrates is relatively symmetric about the anteroposterior axis, with only two semicircular canals and a single sensory macula. This contrasts with the highly asymmetric gnathostome arrangement of three canals and several separate maculae. Symmetric ears can be obtained experimentally in gnathostomes in several ways, including by manipulation of zebrafish Hedgehog signalling, and it has been suggested that these phenotypes might represent an atavistic condition. We have found, however, that the symmetry of the adult lamprey inner ear is not reflected in its early development; the lamprey otic vesicle is highly asymmetric about the anteroposterior axis, both morphologically and molecularly, and bears a striking resemblance to the zebrafish otic vesicle. The single sensory macula originates as two foci of hair cells, and later shows regions of homology to the zebrafish utricular and saccular maculae. It is likely, therefore, that the last common ancestor of lampreys and gnathostomes already had well-defined otic anteroposterior asymmetries. Both lamprey and zebrafish otic vesicles express a target of Hedgehog signalling, patched, indicating that both are responsive to Hedgehog signalling. One significant distinction between agnathans and gnathostomes, however, is the acquisition of otic Otx1 expression in the gnathostome lineage. We show that Otx1 knockdown in zebrafish, as in Otx1(-/-) mice, gives rise to lamprey-like inner ears. The role of Otx1 in the gnathostome ear is therefore highly conserved; otic Otx1 expression is likely to account not only for the gain of a third semicircular canal and crista in gnathostomes, but also for the separation of the zones of the single macula into distinct regions.  相似文献   

20.
Various structural elements of the apical region of hair cells and their location in the saccular macula of four sculpin fish species (Cottoidei) of Lake Baikal—two oilfish species (big golomyanka Comephorus baicalensis and small golomyanka C. dybowski), Severobaikalsk yellowfin Cottocomephorus alexandrae, and stone sculpin Paracottus knerii—were studied by scanning electron microscopy. In stone sculpin Paracottus knerii, which inhabits the coastal areas and leads a benthic lifestyle, the diversity of hair cells (in terms of the height of kinocilium and stereocilia) is big than that in the secondary pelagic species big and small golomyankas and in Severobaikalsk yellowfin, which inhabits the near-slope areas. Stereocilia of hair cells of stone sculpin and Severobaikalsk yellowfin are shorter than in the other species studied. The presence of such cells in the macula can ensure the sensitivity to more high-frequency acoustic signals and facilitate their perception by fish against the background of low-frequency noises characteristic of the coastal zone of the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号