首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A region of c-myc mRNA was identified which permitted very efficient antisense effects to be achieved in living cells using chimeric methylphosphonate--phosphodiester antisense effectors. Novel inosine--containing ribozymes (which cleave after NCH triplets) were directed to an ACA triplet within this region and delivered into living cells. No ribozyme intracellular activity could be identified. Very low ribozyme function was also observed in in vitro assays using a 1700nt substrate RNA.  相似文献   

2.
3.
Abstract

We have identified a region within a 1 kb HIV gag RNA which can be ablated in vitro using a 2,5-A antisense chimera. The cleavage was specific and almost complete at a concentration of 100 nM chimera.  相似文献   

4.

Because the substrate binding site (P1) of HDV ribozyme consists of only seven nucleotides, cleavage of undesired RNA is likely to occur when applied for a specific long RNA target such as mRNA. To overcome this problem, we designed modified trans-acting HDV ribozymes with an extra substrate-binding site (P5) in addition to the original binding site (P1). By inserting an additional seven base-pair stem (P5 stem) into the J1/2 single-stranded region of the ribozyme core system and partial destabilization of the P2 or P4 stem, we succeeded in preparation of new HDV ribozymes that can cleave the target RNA depending on the formation of P5 stem. Moreover, the ribozyme with a six-nucleotide P1 site was able to distinguish the substrate RNA with a complete match from that with a single mismatch in the P1 region. These results suggest that the HDV ribozyme system is useful for the application in vivo.  相似文献   

5.
Abstract

Fast annealing of complementary RNA in vitro is related to effective antisense RNA-mediated regulation of gene expression and inhibition of viral replication in living cells. Pools of antisense RNA can be selected for species that anneal fast with a given target strand. In this study, we compare the technical and biological advantages and disadvantages of a single round selection assay with extensive multiple cycle selection for fast-annealing antisense RNA species.  相似文献   

6.
7.
A series of plasmid vectors have been generated to allow the rapid construction of adenoviral vectors designed to express small RNA sequences. A truncated human U6 gene containing convenient restriction sites has been shown to be expressed at high levels following electroporation into a series of human cell lines. This gene was ligated into a promoterless adenoviral plasmid, and we have generated high titer virus by homologous recombination with adenoviral Addl327 DNA in 293 cells. Recombinant adenovirus containing a hammerhead ribozyme sequence targeted toward the Bcl-2 mRNA has been used to transduce a panel of human tumor cell lines. We have demonstrated high level expression of the recombinant U6 gene containing the ribozyme and reduction of Bcl-2 protein in transduced cells. These plasmids are suitable for the development of adenoviral vectors designed to express both ribozymes and antisense RNA in human cells.  相似文献   

8.
Delta ribozyme possesses several unique features related to the fact that it is the only catalytic RNA known to be naturally active in human cells. This makes it attractive as a therapeutic tool for the inactivation of clinically relevant RNAs. However, several hurdles must be overcome prior to the development of useful gene-inactivation systems based on delta ribozyme. We have developed three procedures for the selection of potential delta ribozyme target sites within the hepatitis B virus (HBV) pregenome: (i) the use of bioinformatic tools coupled to biochemical assays; (ii) RNase H hydrolysis with a pool of oligonucleotides; and (iii) cleavage assays with a pool of ribozymes. The results obtained with delta ribozyme show that these procedures are governed by several rules, some of which are different from those both for other catalytic RNAs and antisense oligonucleotides. Together, these procedures identified 12 sites in the HBV pregenome that can be cleaved by delta ribozymes, although with different efficiencies. Clearly, both target site accessibility and the ability to form an active ribozyme–substrate complex constitute interdependent factors that can best be addressed using a combinatorial library of either oligonucleotides or ribozymes.  相似文献   

9.

We previously demonstrated the function of an HIV-1-dependent ribozyme expression vector, with which the site-specific excision of loxP sequences can be achieved by using the Cre-loxP system (ON/OFF) as a molecular switch in an acute HIV-1 infection. However, this expression system also revealed the lower, non-specific expression of the anti-HIV-1 ribozyme in the absence of tat. To circumvent this problem, we used the more efficient HIV-1-dependent Cre recombinase gene expression vector, encoding the LTR-gag-p17 (extending from the 5′-LTR to the middle of the gag gene (pLTR-gag-p17-Cre)). Comparatively, the pLTR-gag-p17-Cre induces a higher Cre-protein expression level in an HIV-1 infection-dependent manner than the minimal pLTR-Cre. Furthermore, we constructed the ploxP-Rz-U5 and pLTR-gag-p17-Cre plasmids and also combined them into a single vector, pLTR-gag-p17-Cre/loxP-Rz-U5, for a comparison of their anti-HIV-1 activities. The resultant simultaneous expression of the Cre protein and the homologous recombination of the two loxP sequences induced a high level of HIV-1 replication inhibition (95%). Significantly, a high steady-state of ribozyme expression was observed in the RT-PCR analysis. These data imply that targeting the HIV-1 genes with the pLTR-gag-p17-Cre/loxP-Rz-U5 vector, which mediates HIV-1-dependent ribozyme expression, would be a useful tool for HIV-1 gene therapy applications.  相似文献   

10.
Coding sequences for a hammerhead ribozyme designed to cleave lexA mRNA in a targeted manner was cloned under phage T7 promoter and expressed in E. coli strain BL-21 (DE3) expressing T7 RNA polymerase under the control of IPTG-inducible lac UV-5 promoter. Ribozyme expression in vivo was demonstrated by RNase protection assay. Also, total RNA extracted from these transformed cells following induction by IPTG, displays site-specific cleavage of labeled lexA RNA in an In vitro reaction. The result demonstrates the active ribozyme in extracts of cell transformed with a recombinant cassette and goes beyond the earlier demonstration of the stability of In vitro synthesized ribozyme in cell extracts. The observed rise in lexA mRNA rules out any role for protease activity or resulting fragments of lexA protein in de-repression of RNA. (Mol Cell Biochem 271: 197–203, 2005)  相似文献   

11.
Abstract

CXCR4 is both a chemokine receptor and an entry co-receptor for the T-cell line-adapted human immunodeficiency virus type 1 (HIV-1). To find a more efficacious therapeutic treatement of acquied immunodeficiency syndrome, we exmined the effects of antisense oligonucleotides on CXCR4 production. COS cells, stably expressing CXCR4 and CD4, were incubated with several kinds of oligonucleotides. Total human p24 antigen production was determined using an enzyme-linked immunosorbent assay system. An antisense phosphorothioate-modified oligonucleotide, complementary to the translation region of the CXCR4 mRNA, showed minimal inhibition of p24 antigen production at the high concentration of 2μM. On the other hand, the antisense phosphorothioate oligonucleotide, when used with transfection reagents, showed high efficiency at low concentrations, and confirmed the sequence-specific action. Interestingly, the oligonucleotide with the natual phosphodiester backbone, when used with the transfection reagents, also had high functional effects, comparable to the modified oligonucleotide. This defines the prerequisite criteria necessary for the design and the application of antisense oligonucleotides against HIV-1 in vivo.  相似文献   

12.
The cDNA sequence coding for tuna growth hormone (tGH) was placed under the control of the repressible acid phosphatase (PHO5) promoter of a yeast, Saccharomyces cerevisiae, in an expression plasmid, pAM82. The yeast cells transformed with the plasmid synthesized tGH only when the cDNA was attached to the vector through a synthetic oligonucleotide linker having a similar sequence to the 5′-flanking region of the PHO5 structural region. The amount of tGH produced in yeast cells accounted for more than 3% of the total cellular protein and the product was immunologically identified as tGH by Western blotting using polyclonal antibodies specific to tGH.  相似文献   

13.
Generation of conditional mutants in Trypanosoma brucei can be done by the use of RNA interference (RNAi). However, RNAi frequently produces off target effects. Here, we present an alternative strategy in which the glmS ribozyme is inserted in the C‐terminal region of one allele of a GOI and effectively knocks it down in response to the presence of glucosamine in the culture medium. Using several endogenous genes, we show that the glmS ribozyme cleaves the mRNA in vivo leading to reduction in mRNA and protein expression following glucosamine treatment in both T. brucei procyclic and bloodstream forms. Glucosamine‐induced ribozyme activation can be rapidly reversed by removing the inducer. In summary, the glmS ribozyme could be used as a tool to study essential genes in T. brucei.  相似文献   

14.
Several strategies involving the use of antisense and ribozyme constructs in different expression vectors were investigated as methods of suppressing gene expressionin planta. We had previously identified an efficiently cleaving ribozyme (Rz), with two catalytic units and 60 nucleotide (nt) of complementary sequence, to the ligninforming peroxidase of tobacco (TPX). This Rz was cloned behind the 35S CaMV (35S) and nopaline synthase (NOS) promoters, and into a vector utilising the tobacco tyrosine tRNA for expression. For comparison with more traditional antisense strategies, full-length TPX antisense (AS) constructs were also constructed behind the NOS and 35S promoters. Populations of transgenic tobacco containing these constructs were produced and compared to control plants transformed with the vector only. Significant suppression of peroxidase expression in the range of 40–80% was seen in the T0 and T1 populations carrying 35S-AS, 35S-Rz and tRNA-Rz constructs. Co-segregation of the suppressed peroxidase phenotype and the tRNA-Rz transgenes was demonstrated. Northern blot analysis indicated that levels of TPX mRNA were lower in the Rz plants. No evidence of mRNA cleavage was observed and thus it was unclear if the Rz constructs were acting as Rzsin vivo. Transgenic plants containing the tRNA-Rz construct had significantly lower levels of peroxidase than the other transgenic plants. There was no significant difference in levels of suppression of TPX between the short Rz in the 35S vector and the full-length AS constructs. Although peroxidase levels were significantly reduced in transgenic plants carrying 35S-AS, 35S-Rz and tRNA-Rz constructs, no significant difference in lignin levels was observed.  相似文献   

15.
Abstract

Kupffer cells play a key role in the pathogenesis of liver diseases. Liver injury is believed to result from an excessive release of cytokines and prostanoids from these cells. A targeted delivery of antisense oligonucleotides into Kupffer cells might reduce or prevent liver injury. In this report, we describe a method in which anionic liposome-encapsulated antisense phosphorothioate oligodeoxynucleotides (S-Oligos) are delivered to Kupffer cells in vivo. Delivery was assessed using an antisense S-Oligo (TJU-2749) targeted against the 3’ untranslated region of rat tumor necrosis factor-α mRNA. At 90 min post-intravenous injection, 90% of the S-Oligo was absorbed from circulation. Of this, 40% was found in the liver and 10% in spleen. Other organs, including lungs, kidneys, muscle, stomach, brain, testes and small intestine, showed only minor incorporation (<5%). Greater than 65% of the liver-associated S-Oligo was found in Kupffer cells. Relative accumulation of S-Oligo in Kupffer cells was 200-fold that of the combined body tissues. For an average injected dose of 1.2 mg antisense/Kg body weight, the intracellular concentration of the S-Oligo attained in Kupffer cells was 65 μM. These studies suggest that liposome-encapsulated delivery provides an efficient means of targeting antisense molecules to Kupffer cells in vivo.  相似文献   

16.
Translation initiation driven by internal ribosome entry site (IRES) elements is dependent on the structural organization of the IRES region. We have previously shown that a structural motif within the foot-and-mouth-disease virus IRES is recognized in vitro as substrate for the Synechocystis sp. RNase P ribozyme. Here we show that this structure-dependent endonuclease recognizes the IRES element in cultured cells, leading to inhibition of translation. Inhibition of IRES activity was dependent on the expression of the active ribozyme RNA subunit. Moreover, expression of the antisense sequence of the ribozyme did not inhibit IRES activity, demonstrating that stable RNA structures located upstream of the IRES element do not interfere with internal initiation. RNAs carrying defective IRES mutants that were substrates of the ribozyme in vivo revealed an increased translation of the reporter in response to the expression of the active ribozyme. In support of RNA cleavage, subsequent analysis of the translation initiation manner indicated a switch from IRES-dependent to 5′-end-dependent translation of RNase P target RNAs. We conclude that the IRES element is inactivated by expression in cis of RNase P in the cytoplasm of cultured cells, providing a promising antiviral tool to combat picornavirus infections. Furthermore, our results reinforce the essential role of the structural motif that serves as RNase P recognition motif for IRES activity.  相似文献   

17.
Transforming growth factorβ1 (TGFβ1) is known to be intimately involved in many cellular processes. To explore the mechanism of TGFβ1 in these processes, the non-chimeric hammer-head ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 were designed to down-regulate TGFβ1 expression. The activity of non-chimeric ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 in vitro and in activated hepatic stellate cells (HSCs) was detected. Cleavage reactions of both ribozymes in vitro demonstrated that non-chimeric ribozyme possessed better cleavage activity in vitro than U1 snRNA chimeric ribozyme. The further study showed U1 snRNA chimeric ribozyme inhibited TGFβ1 expression more efficiently than non-chimeric ribozyme in transfected HSC cells. So it indicates that the U1 snRNA chimeric ribozyme provides an alternative approach for the research on the precise mechanism of TGFβ1 in many cellular processes and a potential therapeutic candidate for TGFβ1-related diseases.  相似文献   

18.
19.
Functional sequestration of microRNA 122 (miR-122) by treatment with an oligonucleotide complementary to the miRNA results in long-lasting suppression of hepatitis C virus (HCV) viremia in primates. However, the safety of the constitutive miR-122 silencing approach to HCV inhibition is unclear, since miR-122 can modulate the expression of many host genes. In this study, a regulation system capable of specifically inhibiting miR-122 activity only upon HCV infection was developed. To this end, an allosteric self-cleavable ribozyme capable of releasing antisense sequence to miR-122 only in the presence of HCV nonstructural protein 5B was developed using in vitro selection method. The activity of the reporter construct with miR-122 target sequences at its 3' untranslated region and the expression of endogenous miR-122 target proteins were specifically stimulated through sequestration of miR-122 only in HCV replicon Huh-7 cells, but not in na?ve Huh-7 cells, when transfected with expression vector encoding the specific allosteric ribozyme. These findings indicate that miR-122 function can be specifically inhibited by the allosteric ribozyme only in HCV-replicating cells. Importantly, HCV replicon replication was efficiently inhibited by the allosteric ribozyme. This ribozyme could be useful for the specific, safe, and efficacious anti-HCV modulation.  相似文献   

20.
The efficacy of intracellular binding of hammerhead ribozyme to its cleavage site in target RNA is a major requirement for its use as a therapeutic agent. Such efficacy can be influenced by several factors, such as the length of the ribozyme antisense arms and mRNA secondary structures. Analysis of various IL-2 hammerhead ribozymes having different antisense arms but directed to the same site predicts that the hammerhead ribozyme target site is present within a double-stranded region that is flanked by single-stranded loops. Extension of the low cleaving hammerhead ribozyme antisense arms by nucleotides that base pair with the single-stranded regions facilitated the hammerhead ribozyme binding to longer RNA substrates (e.g. mRNA). In addition, a correlation between the in vitro and intracellular results was also found. Thus, the present study would facilitate the design of hammerhead ribozymes directed against higher order structured sites. Further, it emphasises the importance of detailed structural investigations of hammerhead ribozyme full-length target RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号