首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of alpha,alpha'-dichloroazo compounds 2 with SbCl5 gave 1-(chloroalkyl)-1-aza-2-azoniaallene salts 3 as reactive intermediates. Cycloadditions of 3 with the ribofuranosyl cyanide 4 afforded the beta-D-ribofuranosyl-1,2,4-triazolium salts 5, which rearranged spontaneously to salts 6. Hydrolysis of 6 gave the 1,2,4-triazole C-nucleosides 7, which yielded the free nucleosides 8 after deblocking. Analogously, 12 was prepared from the cycloaddition of 4 with the alpha-chloroazo compound 10 in the presence of SbCl5. Deblocking of 12 with sodium methoxide afforded 13. Compounds 8a,b,e,f and 13 were tested against HIV-1, HIV-2, HSV-1 and HSV-2 and were found to be inactive.  相似文献   

2.
Microwave-assisted synthesis of novel acyclic C-nucleosides of 6-alkyl/aryl-3-(1,2-O-isopropylidene-D-ribo-tetritol-1-yl)[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles (5–12) and the 6-aryl-thiomethyl analogues 25–27 has been described. Deblocking of 5–12 and 25–27 afforded the free acyclic C-nucleosides 13–20, and 28–30, respectively. All of the synthesized compounds showed no inhibition against HIV-1 and HIV-2 replication in MT-4 cells. However, 6-(3,4-dichlorophenyl)-3-(1,2-O-isopropylidene-D-ribo-tetritol-1-yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole (6) is a potent inhibitor, in vitro, of the replication of HIV-2. These results suggest that compound 6 should be considered as a new lead in the development of antiviral agent.  相似文献   

3.
Abstract

A group of 1-[(2-hydroxyethoxy)methyl]- (12) and 1-[(1,3-dihydroxy-2-propoxy)methyl]- (13) derivatives of 2,4-difluorobenzene possessing a variety of C-5 substituents (R = Me, H, I, NO2) were designed with the expectation that they may serve as acyclic 5-substituted-2′-deoxyuridine (thymidine) mimics. Compounds 12 and 13 (R = Me, H, I) were inactive as anticancer agents (C50 = 10?3 to 10?4 M range), whereas the 5-nitro compounds (12d, 13d) exhibited weak-to-moderate cytotoxicity (CC50 = 10?5 to 10?6 M range) against a variety of cancer cell lines. All compounds prepared (12a-d, 13a-d) were inactive as antiviral agents in a broad-spectrum antiviral screen that also included the human immunodeficiency virus (HIV-1 and HIV-2) and herpes simplex virus (HSV-1 and HSV-2).  相似文献   

4.
Regioselective alkylation of 5-(3-chlorobenzo[b]thien-2-yl)-4H-1,2,4-triazole (1) with hydroxy alkylating agents 2, 3, 13, and the 2,3-O-isopropylidene-1-O-(p-tolylsulfonyl)-glycerol (10) afforded the corresponding S-alkylated derivatives 6, 7, 11, and 14 under both conventional and microwave irradiation conditions; bentonite as a solid support gave better results, with no change in regioselectivity. A facile intramolecular dehydrative ring closure of 6, 7, 11, and 14 using K2CO3 in DMF afforded the corresponding fused triazolo-thiazines and thiazolo-triazole 17–19. The isopropylidenes and acetyl derivatives of the products were prepared.  相似文献   

5.
A new series of acyclic C-nucleosides 1′,2′-O-isopropylidene-D-ribo-tetritol-1-yl)[1,2,4] triazolo[3,4-b][1,3,4]thiadiazoles bearing arylsulfonamide (5–8) and arylcarboxamide (9–12) residues have been synthesized under microwave irradiation. Thiadiazines 13–15 have been analogously prepared, and upon acid hydrolysis, afforded the free nucleosides 16–18. The new synthesized compounds were assayed against HIV-1 and HIV-2 in MT-4 cells. Compound 7 was also screened against a panel of tumor cell lines consisting of CD4 human T-cells.  相似文献   

6.
The synthesis of 1-[1-(4-hydroxybutyl)-1,2,3-triazol-(4 and 5)-ylmethyl] -1H-pyrazolo[3,4-d]pyrimidines 11a,b, 12a,b and 1317 as carboacyclic nucleosides is described. The compounds 8a,b were condensed, separately, with compound 7 via 1,3-dipolar cycloaddition reaction to afford, after separation and deprotection, 1,4-regioisomers 11a,b and 1,5-regioisomers 12a,b. The deprotected carboacyclic nucleosides 11a served as precursor for the preparation of 4-amino 13, 4-methylamino 14, 4-benzylamino 15, 4-methoxy 16 and 4-hydroxy 17 analogues. All deprotected carboacyclic nucleosides were evaluated for their inhibitory effects against the replication of HIV-1(IIIB), HIV-2(ROD), various DNA viruses, a variety of tumor-cell lines and tuberculosis. No marked biological activity was found.  相似文献   

7.
The chemical synthesis of some 4-substituted 1-[1-(2-hydroxyethoxy)methyl-1,2,3-triazol-(4 and 5)-ylmethyl]-1H-pyrazolo[3,4-d]pyrimidines 12a,b, 13a,b and 14–23 as acyclic nucleosides is described. Treatment of (2-acetoxyethoxy)methylbromide with sodium azide afforded (2-acetoxyethoxy)methylazide 9. The heterocycles 6a,b were alkylated, separately, with propargyl bromide to obtain, regioselectively, 4-(methyl and benzyl)thio-1-(prop-2-ynyl)-1H-pyrazolo[3,4-d]pyrimidines 7a,b. These N1-alkylated products were condensed with compound 9 via a 1,3-dipolar cycloaddition reaction to obtain, after separation and deprotection, 1,4 and 1,5-regioisomers 12a,b and 13a,b. The deprotected acyclic nucleosides 12a and 13a served as precursors for the preparation of 4-amino (14 and 15), 4-methylamino (16 and 17), 4-benzylamino (18 and 19), 4-methoxy (20 and 21) and 4-hydroxy (22 and 23) analogues. Compounds 7a,b and all deprotected acyclic nucleosides were evaluated for their inhibitory effects against the replication of HIV-1(IIIB) and HIV-2(ROD) in MT-4 cells and for their anti-tumor activity. No marked activity was found. However, initial evaluation of 6a,b, 7a,b, 12a,b, 13a,b and 14–23 showed that compound 7b has marked activity against M. tuberculosis.  相似文献   

8.
《Carbohydrate research》1986,149(2):329-345
The reactions of 1-amino-1-deoxy-d-fructose acetate (1) with methyl 3-methoxy-2-methoxycarbonylacrylate and 5-methoxymethylene-2,2-dimethyl-1,3-dioxane-4,6-dione in the presence of a base afforded 1-deoxy-1-[(2,2-dimethoxycarbonylvinyl)amino]- (2 and 1-deoxy-1-[(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidenemethyl)amino]-d-fructose (3), respectively, in high yields. 1-Deoxy-1-[(4,4-dimethyl-2,6-dioxocyclohexylidenemethyl)amino]-d-fructose (4) was obtained (85%) by a transamination reaction between 1 and 5,5-dimethyl-2-phenylaminomethylene-1,3-cyclohexanedione in the presence of Et3N. The isomeric composition of equilibrium solutions of 1–4 was established by 13C-n.m.r. spectroscopy. For all the compounds, the β-pyranose form was the main component in D2O; the α-furanose, the β-furanose, and, for 1, the α-pyranose forms, were also present. The major constituents of 2 in (CD3)2SO solution were the β- and the α-furanose forms. Acetylation of 2 afforded the tetra-acetates of the α- and β-furanose forms, the 3,4,6-triacetates of the α- and β-furanose forms, the 3,4,5-triacetate of the β-pyranose form, and 2,3,4,5,6-penta-O-acetyl-1-deoxy-1-[(2,2-dimethoxycarbonylvinyl)amino]-d-arabino-hex-1-enitol. Glycosidation of 2 with MeOHHCl afforded a mixture of methyl 1-deoxy-1-[(2,2-dimethoxycarbonylvinyl)amino]-α- (11α) and -β-d-fructofuranoside (11β), and methyl 1-deoxy-1-[(2,2-dimethoxycarbonylvinyl)-amino]-β-d-fructopyranoside (13). Compounds 11α and 13 were isolated as their tri-acetates (12 and 14, respectively). Deacetylation and removal of the N-protecting group of 12 gave methyl 1-amino-1-deoxy-α-d-fructofuranoside (∼54% from 2).  相似文献   

9.
Abstract

Cyclopropyl carbocyclic nucleosides have been synthesized from the key intermediate 2 which was converted to the mesylated cyclopropyl methyl alcohol 3. Condensation of compound 3 with various purine and pyrimidine bases gave the desired nucleosides. All synthesized nucleosides were evaluated for antiviral activity and cellular toxicity. Among them adenine 22 and guanine 23 derivatives showed moderate antiviral activity against HIV-1 and HBV. None of the other compounds showed any significant antiviral activities against HIV-1, HBV, HSV-1 and HSV-2 in vitro up to 100μM.  相似文献   

10.
Abstract

Reaction of the silylated 6,7-dihaloquinoline bases 10–12 with l-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (13) gave ethyl 7-chloro-6-flouro-l,4-dihydro-4-oxo-1 -(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)quinoline-3-carboxylate (14) and the free acids 15 and 16, respectively, which led on deblocking of the sugar moiety to the free nucleosides 17, 18 and 20, respectively. Treatment of 14 with methanolic ammonia afforded the amide derivative 19. Ribosylation of 11 with l,2-di-O-acetyl-3-azido-3-deoxy-5-p-toluoyl-β-D-ribofuranose (21) afforded the azido nucleoside 22, which was again converted into the free nucleoside 23. Analogously, reaction of 11 with the chloro deoxyribose derivative 24 led to a mixture of α /β (2:1) anomers of 25. Deblocking and recrystallization of the product gave mainly the α-anomer 26. Compounds 17–19, 23 and 26 were evaluated against Escherichia coli and found inactive. Compound 16–18 and 22 were inactive aganist HIV-1 (III B) and HIV-2 (ROD) induced cytopathicity in human MT-4 lymphocyte cells.  相似文献   

11.
Microwave-assisted synthesis of novel acyclic C-nucleosides of 6-alkyl/aryl-3-(1,2-O-isopropylidene-D-ribo-tetritol-1-yl)[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles (5-12) and the 6-aryl-thiomethyl analogues 25-27 has been described. Deblocking of 5-12 and 25-27 afforded the free acyclic C-nucleosides 13-20, and 28-30, respectively. All of the synthesized compounds showed no inhibition against HIV-1 and HIV-2 replication in MT-4 cells. However, 6-(3,4-dichlorophenyl)-3-(1,2-O-isopropylidene-D-ribo-tetritol-1-yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole (6) is a potent inhibitor, in vitro, of the replication of HIV-2. These results suggest that compound 6 should be considered as a new lead in the development of antiviral agent.  相似文献   

12.
Abstract

Reactjon of (2-acetoxyethoxy)methyl bromide with the silylated lumazine bases (1-6) in the presence of n-Bu4NI leads to the formation of the nucleosides 8, 10, 12, 14, 16 and 18 respectively. Deacetylation with methanolic ammonia afforded the free nucleosides 9, 11, 13, 15, 17 and 19, respectively, in good yields. Structural proofs of the newly synthesized compounds are based on elemental analyses, UV and 1H-NMR spactra. None of the acyclic nucleosides exhibited antiviral activity against HSV-1 in vitro.  相似文献   

13.
Reactions of SbCl5 with various covalent metal halides in MeCN have been studied as a convenient and direct route to metal hexachloroantimonate salts via Sb(V) halide abstraction. The isolation and characterization (Ir, Vis-UV, 1H NMR spectroscopic and microanalytical) of the complexes [Zn(MeCN)6][SbCl6]2, [CrCl2(MeCN)4][SbCl6], [SnCl3(MeCN)3][SbCl6], [TiCl2(MeCN)4][SbCl6]2, [Cp2M(Cl)(MeCN)x][SbCl6] M = ti, x = 1; M = Zr, Hf, x = 2, and [Cp2M(MeCN)y][SbCl6]2 M = Ti, y = 2; M = Zr, Hf, y = 3, is described. The reaction of MgCl2 with SbCl5 was carried out in EtOAC as solvent and gave [Mg(EtOAc)6][SbCl6]2. 121Sb NMR, IR and UV spectroscopic measurements provide positive identification of the SbCl6 anion.  相似文献   

14.
Abstract

(2R,5S)-5-Amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,2,4-triazine-3(2H)-one (8) and (2R,5R)-5-amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,2,4-triazine-3(2H)-one (9) have been synthesized via a multi-step procedure from 6-azauridine. (2R,5S)-4-Amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,3,5-triazine-2(1H)-one (11) and (2R,5R)-4-amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,3,5-triazine-2(1H)-one (12), and the fluorosubstituted 3-deazanucleosides (19–24) have been synthesized by the transglycosylation of (2R,5S)-1-{2-[[(tert-butyldiphenylsilyl) oxy]methyl]-1,3-oxathiolan-5-y1} cytosine (2) with silylated 5-azacytosine and the corresponding silylated fluorosubstituted 3-deazacytosines, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by deprotection of the blocking groups. These compounds were tested in vitro for cytotoxicity against L1210, B16F10, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1 and HBV.  相似文献   

15.
Abstract

2′,3′-Dideoxy-8-aza-1-deazaadenosine (21) and its α-anomer (20) were synthesized via glycosylation of 7-chloro-3H-1,2,3-triazolo[4,5-b]pyridi-ne with 2,3-dideoxy-5-O-[(1, 1)-dimethylethyl)diphenylsilyl]-D-glycero-o-pen-tofuranosyl chloride. The reaction gave a mixture of α- and β-anomers of N3-, N4- and N1-glycosylated regioisorners (12–15). The α- and β-anomers of the N4-glycosylated isomer 26 and 27 were also synthesized through the glycosylation of 8-aza-1-deazaadenine with 1-acetoxy-2,3-dideoxy-5-O-f(1,1-di-methylethyl)dimethylsilyl]-D-glycero-pentouranose. These dideoxynucleo-sides and a series of previously synthesized 8-aza-1-deazapurine nucleosidcs were tested for activity against several DNA and RNA viruses, HIV-1 included. The α- and β-anomers of 7-chloro-3-(2-deoxy-D-erythro-pentofuranosyl)-3H-1,2,3-triazolo[4,5-b]pyridine (3a and 4) showed activities against Sb-1 and Coxs viruses. The α- and β-anomers of 2′,3′-dideoxy-8-aza-1-deazaadenosine (20 and 21) were found active as inhibitors of adenosine deaminase.  相似文献   

16.
Abstract

3,4-Diaryl-4,5-dihydro-1,2,4-triazole-5-thiones (1a-c) were silylated to give compounds (2a-c) which were condensed with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (3) in the presence of trimethylsilyl trifluoromethane sulfonate to afford the corresponding nucleosides 4a-c. Treatment of 4a-c with sodium methoxide in methanol at room temperature afforded the debenzoylated nucleosides 5a-c. The reaction of 5a with acetone in the presence of p-toluenesulfonic acid gave the 2′, 3′-isopropylidene derivative (6a). Phosphorylation of 6a with phosphoryl chloride and triethylphosphate followed by treatment with barium hydroxide afforded barium 3,4-diphenyl-4,5-dihydro(β-D-ribofuranosyl)-1,2,4-triazole-5-thione-5′- monophosphate, which gave after lyophilization the free acid (7a)  相似文献   

17.
The seco C-nucleosides 3-(1,2,3,4,5-penta-O-acetyl-D-gluco- and D- galacto-pentitol-1-yl)-1H-1,2,4-triazoles (8 and 9) were obtained in a one pot by deamination and dethiolation of 4-amino-3-(D-gluco- and D-galacto-pentitol-1-yl)-5-mercapto-1,2,4-triazoles (1 and 2), respectively, using sodium nitrite in orthophosphoric acid and subsequent acetylation. Condensation of 1, 2, and 4-amino-3-(D-glycero-D-gulo-hexitol-1-yl)-5-mercapto-1,2,4-triazole (12) with phenacylbromide (11) afforded the corresponding 3-(D-gluco-, D-galacto-pentitol-1-yl) and 3-(D-glycero-D-gulo-hexitol-1-yl)-6-phenyl-7H-1,2,4- triazolo[3,4-b][1,3,4] thiadiazines (15, 16, and 17). Acetylation of 15–17 gave the penta- and hexa-O-acetyl derivatives 18–20, respectively. The structures were confirmed by using 1H, 13C, and 2D NMR spectra, DQFCOSY, HMQC, and HMBC experiments. The favored conformational structures were deduced from the vicinal coupling constants of the protons.  相似文献   

18.

Nucleophilic displacement of the tosyloxy group in 7-(2-hydroxy-3-p-toluenesulfonyloxypropyl)theophylline (1) with azide anion afforded 7-(3-azido-2-hydroxypropyl)theophylline (2). Reduction of the 3-azido group in 2 with Ph3P/Py/NH4OH afforded the 3-amino derivative 4, alternatively obtained by regioselective amination of 7-(2,3-epoxypropyl)theophylline (3). Selective acetylation of 4 gave the N-acetyl derivative 5. 1,3-Dipolar cycloaddition of the azide group in 2 with N1-propargyl thymine (6) afforded the regioisomeric triazole 7.  相似文献   

19.
Reaction of ethyl 4-thioxo-3,4-dihydropyrimidine-5-carboxylate derivatives 1a,b and ethyl 4-oxo-3,4-dihydropyrimidine-5-carboxylate 1c with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in KOH or TEA afforded ethyl 2-aryl-4-(2′,3′,4′,6′-tetra-O-acetyl-β-D-glucopyranosylthio or/ oxy)-6-methylpyrimidine-5-carboxylate 6a-c. The glucosides 6a and 6b were obtained by the reaction of 1a and 1b with peracetylated glucose3 under MW irradiation. Mercuration of 1a followed by reaction with acetobromoglucose gave the same product 6a. The reaction of 1a-c with peracetylated ribose 4 under MW irradiation gave ethyl 2-aryl-4-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranosylthio)-6-methylpyrimidine-5-carboxylate 8a–c. The deprotection of 6a–c and 8a–c in the presence of methanol and TEA/H2O afforded the deprotected products 7a–c and 9a–c. The structure were confirmed by using 1H and 13CNMR spectra. Selected members of these compounds were screened for antimicrobial activity.  相似文献   

20.
5-HT1AR agonist or partial agonists are established drug candidates for psychiatric and neurological disorders. We have reported the synthesis and evaluation of a series of high affinity 5-HT1AR partial agonist PET imaging agents with greater selectivity over α-1AR. The characteristic of these molecules are 3,5-dioxo-(2H,4H)-1,2,4-triazine skeleton tethered to an arylpiperazine unit through an alkyl side chain. The most potent 5-HT1AR agonistic properties were found to be associated with the molecules bearing C-4 alkyl group as the linker. Therefore development of 3,5-dioxo-(2H,4H)-1,2,4-triazine bearing arylpiperazine derivatives may provide high affinity selective 5-HT1AR ligands. Herein we describe the synthesis and evaluation of the binding properties of a series of arylpiperazine analogues of 3,5-dioxo-(2H,4H)-1,2,4-triazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号