首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The intercalative binding of chiral tris(phenanthroline) metal complexes to DNA is stereo-selective. The enantiomeric selectivity is based upon the differential steric interactions between the two non-intercalating phenanthroline ligands of each isomer with the DNA phosphate backbone. Gel electrophoretic assays of helical unwinding, optical enrichment studies by equilibrium dialysis and luminescence titrations with separated enantiomers of (phen)3Ru2+ all indicate that the delta isomer binds preferentially to the right-handed duplex. The chiral discrimination is governed by the DNA helical asymmetry. Complete stereospecifity is seen with isomers of the bulkier RuDIP (tris-4,7-diphenylphenanthrolineruthenium(II)). While both isomers bind to Z-DNA, a poor template for discrimination, binding of Λ-RuDIP to B-DNA is precluded. These chiral complexes therefore serve as a chemical probe to distinguish left and right-handed DNA helices in solution.  相似文献   

2.
3.
Abstract

All atom molecular dynamics simulations (10ns) of a nucleosome and of its 146 basepairs of DNA free in solution have been conducted. DNA helical parameters (Roll, Tilt, Twist, Shift, Slide, Rise) were extracted from each trajectory to compare the conformation, effective force constants, persistence length measures, and fluctuations of nucleosomal DNA to free DNA. The conformation of DNA in the nucleosome, as determined by helical parameters, is found to be largely within the range of thermally accessible values obtained for free DNA. DNA is found to be less flexible on the nucleosome than when free in solution, however such measures are length scale dependent. A method for disassembling and reconstructing the conformation and dynamics of the nucleosome using Fourier analysis is presented. Long length variations in the conformation of nucleosomal DNA are identified other than those associated with helix repeat. These variations are required to create a proposed tetrasome conformation or to qualitatively reconstruct the 1.75 turns of the nucleosome's superhelix. Reconstruction of free DNA using selected long wavelength variations in conformation can produce either a left-handed or a right-handed superhelix. The long wavelength variations suggest 146 basepairs is a natural length of DNA to wrap around the histone core.  相似文献   

4.
Abstract

Antibodies have been raised to the synthetic DNA polymer poly(dG)·poly(dC). These antibodies have the ability to distinguish this right-handed polymer from natural mixed sequence DNA, as well as from other right- and left-handed synthetic DNA polymers. They show reduced but measurable binding to synthetic polymers which contain various combinations of guanine and cytosine polynucleotides suggesting that both helical shape and sequence are recognized by this antiserum.  相似文献   

5.
Abstract

In this paper we describe the nature and importance of processive enzymatic reactions in biological processes. A model is set up to describe the processive synthetic process in DNA replication, and experiments are presented to define and test the model, using the components of the T4 phage-coded five-protein (in vitro) DNA replication system of Alberts, Nossal and coworkers. These experiments are performed either with a homogeneous oligo dT-poly dA primer-template system, or with a natural primer-template system using phage M13 DNA. The results are used to define some molecular aspects of the microscopic “processivity cycle”.  相似文献   

6.
7.
Plasmid DNA encoding a luciferase reporter gene was complexed with each of six different hybrid nanoparticles (NPs) synthesized from mixtures of poly (D, L-lactide-co-glycolide acid) (PLGA 50:50) and the cationic lipids DOTAP (1, 2-Dioleoyl-3-Trimethyammonium-Propane) or DC-Chol {3β-[N-(N', N'-Dimethylaminoethane)-carbamyl] Cholesterol}. Particles were 100-400 nm in diameter and the resulting complexes had DNA adsorbed on the surface (out), encapsulated (in), or DNA adsorbed and encapsulated (both). A luciferase reporter assay was used to quantify DNA expression in 293 cells for the uptake of six different NP/DNA complexes. Optimal DNA delivery occurred for 105 cells over a range of 500 ng - 10 μg of NPs containing 20-30 μg DNA per 1 mg of NPs. Uptake of DNA from NP/DNA complexes was found to be 500-600 times as efficient as unbound DNA. Regression analysis was performed and lines were drawn for DNA uptake over a four week interval. NP/DNA complexes with adsorbed NPs (out) showed a large initial uptake followed by a steep slope of DNA decline and large angle of declination; lines from uptake of adsorbed and encapsulated NPs (both) also exhibited a large initial uptake but was followed by a gradual slope of DNA decline and small angle of declination, indicating longer times of luciferase expression in 293 cells. NPs with encapsulated DNA only (in), gave an intermediate activity. The latter two effects were best seen with DOTAP-NPs while the former was best seen with DC-Chol-NPs. These results provide optimal conditions for using different hybrid NP/DNA complexes in vitro and in the future, will be tested in vivo.  相似文献   

8.
Benzimidazole is a neutral ligand which is often used to synthesize bioactive compounds. Two transition metal benzimidazole-based complexes, namely, vanadium (IV) dioxido complex (complex 1) and vanadium (V) oxido-peroxido complex (complex 2) with tridentate benzimidazole ligand, 2,6-di (1H-benzo[d]imidazol-2-yl) pyridine (Byim) have been designed with the intention of developing potential DNA nuclease. Different studies involving biochemical and biophysical techniques along with molecular docking suggest that both the complexes interact with DNA, while the mode of binding is intercalation. The complexes were further used for DNA cleavage activity. Both of them were found to have substantial DNA nuclease activity, but complex 2 was more potent than complex 1 in exhibiting such activity.  相似文献   

9.
ABSTRACT

Affinity modification of EcoRII DNA methyltransferase (M·EcoRII) by DNA duplexes containing oxidized 2′-O-β-D-ribofuranosylcytidine (Crib*) or 1-(β-D-galactopyranosyl)thymine (Tgal*) residues was performed. Cross-linking yields do not change irrespective of whether active Crib* replaces an outer or an inner (target) deoxycytidine within the EcoRII recognition site. Chemical hydrolysis of M·EcoRII in the covalent cross-linked complex with the Tgal*-substituted DNA indicates the region Gly268-Met391 of the methylase that is likely to interact with the DNA sugar-phosphate backbone. Both specific and non-specific DNA interact with the same M·EcoRII region. Our results support the theoretically predicted DNA binding region of M·EcoRII.  相似文献   

10.
In order to better understand the involvement of the DNA molecule in the replication initiation process we have characterized the structure of the DNA at Autonomously Replicating Sequences (ARSs) in Saccharomyces cerevisiae. Using a new method for anti-bent DNA analysis, which allowed us to take into account the bending contribution of each successive base plate, we have investigated the higher-order structural organization of the DNA in the region which immediately surrounds the ARS consensus sequence (ACS). We have identified left- and right-handed anti-bent DNAs which flank this consensus sequence. The data show that this organization correlates with an active ACS. Analysis of the minimum nucleotide sequence providing ARS function to plasmids reveals an example where the critical nucleotides are restricted to the ACS and the right-handed anti-bent DNA domain, although most of the origins considered contained both left- and right-handed anti-bent DNAs. Moreover, mutational analysis shows that the right-handed form is necessary in order to sustain a specific DNA conformation which is correlated with the level of plasmid maintenance. A model for the role of these individual structural components of the yeast replication origin is presented. We discuss the possible role of the right-handed anti-bent DNA domain, in conjunction with the ACS, in the process of replication initiation, and potentialities offered by the combination of left- and right-handed structural components in origin function. Received: 29 October 1999 / Accepted: 14 March 2000  相似文献   

11.
[目的]以嗜酸嗜热硫化叶菌Sulfolobus acidocaldarius的DNA聚合酶IV (Saci_0554)为例,表征其跨越模板上损伤碱基的DNA合成效果。[方法]将DNA聚合酶IV (SacpolIV)在大肠杆菌中进行重组表达,经亲和层析纯化得到SacpolIV蛋白;利用人工合成的带有不同损伤的寡核苷酸片段作为模板DNA,用尿素变性聚丙烯酰胺凝胶电泳技术,鉴定SacpolIV在体外跨越各种损伤碱基进行跨损伤合成的催化能力。[结果]SacpolIV重组蛋白能够不同程度地跨越嘌呤和嘧啶损伤,跨越能力的高低取决于损伤碱基与正常碱基形成氢键的能力。本研究还发现,SacpolIV能够在DNA链中掺入核糖核苷酸,但掺入核糖核苷酸的效率低于脱氧核糖核苷酸。[结论]本研究证实SacpolIV具有很强的跨越损伤合成能力,能够跨越多种氢键配对能力减弱的损伤碱基,为其在细胞内的跨越损伤合成功能提供了生化证据。  相似文献   

12.
Circular dichroism of polynucleotides: dimers as a function of conformation   总被引:3,自引:0,他引:3  
Working within the restrictions of a model, we have calculated the circular dichroism of the dinucleoside phosphates ApA, CpC, and CpA for various conformations. Comparing the calculated curves with those measured in aqueous solution we find agreement for (1) ApA as a right-handed helix with both bases either as in B-form DNA, or else rotated 180° around the glycosidic bond, (2) CpC as the right-handed conformation with both bases as in DNA, (3) ApC as either the right-handed conformation with both bases as in DNA, or else as a left-handed helix with both bases rotated 180°, and (4) CpA as either a left-handed helix with both bases in a left-handed DNA, or else in the right-handed conformation with both bases rotated 180°. In addition, we have investigated circular dichroism as a measure of unstacking. We find that opening the bases to a 90° total angle (base planes perpendicular) reduces the intensity of the calculated bands to 20% of their original value. Further, we find that allowing the sliding of one base past the other does not lead to a temperature dependence consistent with experiment.  相似文献   

13.
Variation in inhibition of real-time PCR was investigated with DNA extracts from 50 aquifer sediment core samples of 5 cm length collected through a 2.5 meter vertical profile across a landfill leachate plume. The inhibition was quantified using an internal control of the green fluorescent protein ( gfp ) gene, which was spiked into the real-time PCR reactions. The inhibition was investigated at two gfp gene concentrations: at 1.7 · 10 7 gfp gene copies/g sediment (5.1 · 10 4 gfp gene copies/PCR reaction) and at 1.7 · 10 5 gfp gene copies/g sediment (5.1 · 10 2 gfp gene copies/PCR reaction). Despite the low TOC content of the sediment (average 0.4 mg C/g dw) the average real-time PCR response was partially inhibited, compared to a reference (pure water), at both high and low gfp concentrations. The relative amplification (reference = 1) was 0.85 ± 0.20 (high) and 0.66 ± 0.23 (low), showing significantly (P < 0.05) stronger inhibition at the lower target gene concentration. The inhibition of the real-time PCR did not show a systematic variation in the vertical profile related to plume position but variations were significant on a small scale of 5–15 cm depth intervals. One of the 50 samples failed to produce a signal with either concentration of the gfp internal control and three other samples inhibited real-time PCR at both high and low gfp concentration. These 4 samples, which were the samples with the highest inhibition, were the only DNA extracts with a visible brown colouration, indicating contents of humic-like substances. Elevated absorbance at 400 nm of these samples also indicated that humic-like substances were responsible for inhibition. However, other factors not associated with either absorbance or TOC may have contributed to the inhibition in less inhibited samples since the variation in real-time PCR response could not be sufficiently explained by absorbance or TOC. The results of this study suggest that an internal control is needed in real-time PCR reactions with DNA from environmental samples due to variation in inhibition to correctly quantify the number of target genes, especially at low target gene concentrations, when dilution of DNA extracts is not practical.  相似文献   

14.
We have investigated structural transitions in Poly(dG-dC) and Poly(dG-Me5dC) in order to understand the exact role of cations in stabilizing left-handed helical structures in specific sequences andthe biological role, if any, of these structures. From a novel temperature dependent Z ⇌ B transition it has been shown that a minor fluctuation in Na+ concentration at ambient temperature can bring about B to Z transition. Forthe first time, wehave observed a novel Z⇌B⇌Zuble transition in poly(dG-Me5dC) as the Na+ concentration is gradually increased. This suggests that a minor fluctuation in Na+ concentration in conjunction with methylation may transform small stretches of CG sequences from one conformational state to another. These stretches could probably serve as sites for regulation. Supercoiled formV DNA reconstituted from pBR322 and pβG plasmids have been studied as model systems, in order to understand the nature and role of left-handed helical conformation in natural sequences. A large portion of DNA in form V, obtained by reannealing the two complementary singlestranded circles is forced to adopt left-handed double helical structure due to topological constraints (L k = 0). Binding studies with Z-DNA specific antibody and spectroscopic studies confirm the presence of left-handed Z-structure in the pβG and pβR322 form V DNA. Cobalt hexamine chloride, which induces Z-form in Poly(dG-dC) stabilizes the Z-conformation in form V DNA even in the non-alternating purine-pyrimidine sequences. A reverse effect is observed with ethidium bromide. Interestingly, both topoisomerase I and II (from wheat germ) act effectively on form V DNA to give rise to a species having an electrophoretic mobility on agarose gel similar to that of open circular (form II) DNA. Whether this molecule is formed as a result of the left-handed helical segments of form V DNA undergoing a transition to the right-handed B-form during the topoisomerase action remains to be solved.  相似文献   

15.
【目的】本研究旨在通过将琼脂糖包埋染色体DNA的方法与ExoCET重组技术相结合,建立放线菌天然产物生物合成基因簇的捕获方法。然后将克隆基因簇导入通用底盘宿主中,实现目标生物合成基因簇的异源表达。【方法】首先,利用低熔点琼脂糖包埋技术制备菌株的染色体基因组总DNA,再用限制性内切酶消化含有染色体DNA的琼脂块,获得线性化的DNA样品;然后利用ExoCET重组技术,以p15A线性载体片段将目标基因簇线性片段进行捕获;再通过PCR-targeting的方法向目标质粒中引入所需的接合转移DNA元件。接着,将改造质粒通过接合转移导入到Streptomyces coelicolor M1252宿主中,获得不同的重组菌株。最后,对不同的菌株进行发酵并提取化合物,最后进行活性检测以及质谱检测。【结果】通过该方法,从菌株S.lincolnensisNRR2936中成功获得了林可霉素生物合成基因簇(lmb-BGC),从菌株Nonomuraea nitratireducens WYY166T中克隆得到了2个核糖体肽类化合物的生物合成基因簇(nioblantin,niob-BGC和nitblantin,nitb-BGC),并实现了lmb-BGC在天蓝色链霉菌M1252中的成功表达。【结论】本研究通过将低熔点琼脂糖包埋技术与ExoCET重组技术进行合理整合,定向克隆得到了林可霉素以及2个新颖的羊毛硫肽类化合物的生物合成基因簇。然后,分别对重组质粒改造后,在天蓝色链霉菌M1252宿主中进行表达,分别获得重组菌株MJX01、MJX02和MJX04。最后,利用质谱以及活性测试的手段对发酵提取物进行了检测,确定了林可霉素生物合成基因簇在天蓝色链霉菌M1252中成功表达。本研究为通过基因簇克隆和异源表达发掘新化合物奠定了基础。  相似文献   

16.
Abstract

We have analyzed the reactivity of a 217 base pair segment of the intrinsically curved Crithidia fasciculata kinetoplast DNA towards eukaryotic DNA topoisomerase I. The substrates were open [linear fragment and nicked circle] and closed minidomains [closed relaxed circle and circles with linking differences of ?1 and ?2], We interpreted the results with the aid of a model that was used to predict the structures of the topoisomers. The modelling shows that the ΔLk(?l) form is unusually compact because of the curvature in the DNA. To determine the role of sequence-directed curvature in both the experimental and modeling studies, controls were examined in which the curved Crithidia sequence was replaced by an uncurved sequence obtained from the plasmid pBR322.

Reactivity of the Crithidia DNA [as analyzed both by the cleavage and the topoisomerization reactions] markedly varied among the DNA forms: (i) the hierarchy of overall reactivity observed is: linear fragment > nicked circular, closed circular [ΔLk(O)], interwound [ΔLk(?2)] > bent interwound [ΔLk(?l)]; (ii) the intensity of several cleavage positions differs among DNA forms.

The results show that eukaryotic DNA topoisomerase I is very sensitive to the conformation of the substrates and that its reactivity is modulated by the variation of the compactness of the DNA molecule. The C. fasciculata sequence contains a highly curved segment that determines the conformation of the closed circle in a complex way.  相似文献   

17.
The conformation of DNA that originates from association of complementary single-stranded circles (form V DNA) is investigated in solution at low salt concentration. It is shown that circular dichroism extended to the far ultraviolet region (down to 165 nm) represents a powerful tool for determination of the handedness of double helical DNAs in solution. The positive intense band at 186 nm followed by a strong negative band around 170 nm is characteristic of all right-handed helical forms (B,A) of DNA, whereas the circular dichroism spectrum of the Z form of poly[d(G-C)] of opposite helical sense represents a quasi inversion of these far ultraviolet bands. Thus, form V DNA is found to represent a co-existence of left-handed Z-type and right-handed B double helical stretches in addition to negative superturns. The Raman spectrum of form V DNA provides further support for the contribution of a left-handed double helical conformation, as shown by comparison to the high resolution Raman spectra of poly[d(G-C)] in the Z and B forms.The analysis of present spectroscopic data and the analysis of occurrence of alternating [d(G-C)] purine-pyrimidine sequences in the form V DNA used strongly suggest that in DNA of natural sequence, topological constraint may generate left-handed double helices, a conformation thought so far to be limited to the alternating [d(G-C)] sequences. Such structure could play a role in recognition and regulation of gene expression.  相似文献   

18.
Abstract

The computational prediction of nucleosome positioning from DNA sequence now allows for in silico investigation of the molecular evolution of biophysical properties of the DNA molecule responsible for primary chromatin organization in the genome. To discern what signal components driving nucleosome positioning in the yeast genome are potentially targeted by natural selection, we compare the performance of various models predictive of nucleosome positioning within the context of a simple statistical test, the repositioned mutation test. We demonstrate that while nucleosome occupancy is driven largely by translational exclusion in response to AT content, there is also a strong signature of evolutionary conservation of regular patterns within nucleosomal DNA sequence related to the structural organization of the nucleosome core (e.g., 10-bp dinucleotide periodicity). We also use computer simulations to investigate hypothetical coding and regulatory constraints on the ability of sequence properties affecting nucleosome formation to adaptively evolve. Our results demonstrate that natural selection may act independently on different DNA sequence properties responsible for local chromatin organization. Furthermore, at least with respect to the deformation energy of the DNA molecule in the nucleosome, the presence of the genetic code has greatly restricted the ability of sequences to evolve the dynamic nucleosome organization typically observed in promoter regions.  相似文献   

19.
Abstract

Affinity labeling of methyltransferase MvaI by DNA duplexes containing oxidized 2′-O-β-D-ribofuranosylcytidine or 1-(β-D-galactopyranosyl)thymine residues was performed. Partial chemical hydrolysis of the covalently bound methylase in the conjugates with the dialdehyde-containing DNA allowed us to determine the amino acid region in the C terminus of methylase MvaI that interacts with DNA.  相似文献   

20.
Abstract

The close approach of DNA segments participates in many biological functions including DNA condensation and DNA processing. Previous crystallographic studies have shown that B-DNA self-fitting by mutual groove-backbone interaction produces right-handed DNA crossovers. These structures have opened new perspectives on the role of close DNA-DNA interactions in the architecture and activity the DNA molecule. In the present study, the analysis of the crystal packing of two B-DNA decamer duplexes d(CCIIICCCGG) and d(CCGCCGGCGG) reveals the existence of new modes of DNA crossing. Symmetric left- handed crossovers are produced by mutual fitting of DNA grooves at the crossing point. New sequence patterns contribute to stabilize longitudinal fitting of the sugar-phosphate backbone into the major groove. In addition, the close approach of DNA segments greatly influences the DNA conformation in a sequence dependent manner. This study provides new insights into the role of DNA sequence and structure in DNA-DNA recognition. In providing detailed molecular views of DNA crossovers of opposite chirality, this study can also help to elucidate the role of symmetry and chirality in the recognition of complex DNA structures by protein dimers or tetramers, such as topoisomerase II and recombinase enzymes. These results are discussed in the context of the possible relationships between DNA condensation and DNA processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号