首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在原核生物中,硒蛋白合成需要tRNA~(Sec) (SelC)与硒代半胱氨酸合成(Sec synthase, SelA)、硒代半胱氨酸特异性延伸因子(Sec-specificelongationfactor,SelB)之间相互作用。【目的】基于大肠杆菌掺硒机器,寻找tRNA~(Sec)骨架上关键核苷酸位点,为解决硒蛋白目前面临的掺硒效率较低、产量低的问题提供新思路。【方法】以大鼠细胞质型硫氧还蛋白还原酶(thioredoxinreductase1,TrxR1)为掺硒模式蛋白为定点突变tRNA~(Sec),转化至BL21 (DE3) gor-获得阳性重组菌株(携带pET-TRSter/pSUABC’),用于表达大鼠硒蛋白TrxR1,然后使用2¢,5¢ADP-Sepharose亲和层析和凝胶过滤两步法分离纯化TrxR1,最后利用经典硒依赖型DTNB还原反应测定TrxR1的酶活,分析关键核苷酸位点,评价掺硒效率。【结果】在存在SECIS元件的前提下,当SelA、SelB、tRNA~(Sec)共表达时,与野生型相比,携带突变型tRNA~(Sec)所共表达的TrxR1酶活力呈现不同程度的降低,其中E.colitRNA~(Sec)的G18、G19这两个位点的所有的TrxR1酶活远低于野生型(10%);然而,a26和b7的酶活相对较高。【结论】E. coli tRNA~(Sec)骨架上G18和G19位点对于维持tRNA稳定性和灵活性发挥了关键作用,位点突变引起tRNA结构变化会影响tRNA~(Sec)与掺硒元件的互作,因此有望通过改造tRNA核苷酸位点来提高硒蛋白的掺硒效率。  相似文献   

2.
Abstract

Fluorophore of proflavine was introduced onto the 3′-terminal ribose moiety of yeast tRNAPhe. The distance between the fluorophore and the fluorescent Y base in the anticodon of yeast tRNAPhe was measured by a singlet-singlet energy transfer. Conformational changes of tRNAPhe with binding of tRNAGlu 2, which has the anticodon UUC complementary to the anticodon GAA of tRNAPhe, were investigated. The distance obtained at the ionic strength of 100 mM K+ and 10 mM Mg2+ is very close to the distance from x-ray diffraction, while the distance obtained in the presence of tRNAGlu 2 is significantly smaller. Further, using a fluorescent probe of 4-bromomethl-7-methoxycoumarin introduced onto pseudouridine residue Ψ55 in the TΨC loop of tRNAPhe, Stern-Volmer quenching experiments for the probe with or without added tRNAGlu 2were carried out. The results showed greater access of the probe to the quencher with added tRNAGlu 2. These results suggest that both arms of the L-shaped tRNA structure tend to bend inside with binding of tRNAGlu 2 and some structural collapse occurs at the corner of the L-shaped structure.  相似文献   

3.
4.
Primary structure of Bacillus subtilis tRNAsTyr   总被引:4,自引:0,他引:4  
tRNAITyr and tRNAIITyr have been purified from B.subtilis and their nucleotide sequence determined. tRNAITyr differs from tRNAIITyr only by the extent of modification of the adenosine in 3′ position adjacent to the anticodon, i6A and ms2i6A respectively.  相似文献   

5.
6.
7.
8.
Transfer RNA is highly modified. Nucleotide 37 of the anticodon loop is represented by various modified nucleotides. In Escherichia coli, the valine-specific tRNA (cmo5UAC) contains a unique modification, N6-methyladenosine, at position 37; however, the enzyme responsible for this modification is unknown. Here we demonstrate that the yfiC gene of E. coli encodes an enzyme responsible for the methylation of A37 in tRNA1Val. Inactivation of yfiC gene abolishes m6A formation in tRNA1Val, while expression of the yfiC gene from a plasmid restores the modification. Additionally, unmodified tRNA1Val can be methylated by recombinant YfiC protein in vitro. Although the methylation of m6A in tRNA1Val by YfiC has little influence on the cell growth under standard conditions, the yfiC gene confers a growth advantage under conditions of osmotic and oxidative stress.  相似文献   

9.
The best documented selection-based hypothesis to explain unequal usage of codons is based on the relative abundance of isoaccepting tRNAs. In unicellular organisms the most used codons are optimally translated by the most abundant tRNAs. The chemical bonding energies are affected by modification of the four traditional bases, in particular in the first anti-codon corresponding to the third codon position. One nearly universal modification is queuosine (Q) for guanine (G) in tRNAHis, tRNAAsp, tRNAAsn, and tRNATyr; this changes the optimal binding from codons ending in C to no preference or a slight preference for U-ending codons. Among species of Drosophila, codon usage is constant with the exception of the Drosophila willistoni lineage which has shifted primary usage from C-ending codons to U/T ending codons only for these four amino acids. In Drosophila melanogaster Q containing tRNAs only predominate in old adults. We asked the question whether in D. willistoni these Q containing tRNAs might predominate earlier in development. As a surrogate for levels of modification we studied the expression of the gene (tgt) coding for the enzyme that catalyzes the substitution of Q for G in different life stages of D. melanogaster, D. pseudoobscura, and D. willistoni. Unlike the other two species, the highest tgt expression in D. willistoni is in young females producing eggs. Because tRNAs laid down in eggs persist through the early stages of development, this implies that Q modification occurs earlier in development in D. willistoni than in other Drosophila.  相似文献   

10.
The sequences of three transfer RNAs from mosquito cell mitochondria, tRNAUCGArg, tRNAGUCAsp, and tRNAGAUIle, determined using a combination of rapid ladder and fingerprinting procedures are reported. These were compared with hamster mitochondrial tRNAUCGArg and tRNAGUCAsp determined similarly, and a bovine mitochondrial tRNAGAUIle determined using a somewhat different approach. The primary sequences of the mosquito tRNAs were 35 to 65% homologous to the corresponding mammalian mitochondrial species, and bore little homology to “conventional” (bacterial or eucaryotic cytoplasmic) tRNA. The modification status of the mosquito mitochondrial tRNAs resembled that of mammalian mitochondrial tRNA. The results contribute to the generalization that metazoan mitochondrial tRNA constitutes a distinctive, albeit loosely structured, phylogenetic group.  相似文献   

11.
Breaking the degeneracy of the genetic code via sense codon reassignment has emerged as a way to incorporate multiple copies of multiple non-canonical amino acids into a protein of interest. Here, we report the modification of a normally orthogonal tRNA by a host enzyme and show that this adventitious modification has a direct impact on the activity of the orthogonal tRNA in translation. We observed nearly equal decoding of both histidine codons, CAU and CAC, by an engineered orthogonal M. jannaschii tRNA with an AUG anticodon: tRNAOpt. We suspected a modification of the tRNAOptAUG anticodon was responsible for the anomalous lack of codon discrimination and demonstrate that adenosine 34 of tRNAOptAUG is converted to inosine. We identified tRNAOptAUG anticodon loop variants that increase reassignment of the histidine CAU codon, decrease incorporation in response to the histidine CAC codon, and improve cell health and growth profiles. Recognizing tRNA modification as both a potential pitfall and avenue of directed alteration will be important as the field of genetic code engineering continues to infiltrate the genetic codes of diverse organisms.  相似文献   

12.
The tRNA modification m1G37, introduced by the tRNA methyltransferase TrmD, is thought to be essential for growth in bacteria because it suppresses translational frameshift errors at proline codons. However, because bacteria can tolerate high levels of mistranslation, it is unclear why loss of m1G37 is not tolerated. Here, we addressed this question through experimental evolution of trmD mutant strains of Escherichia coli. Surprisingly, trmD mutant strains were viable even if the m1G37 modification was completely abolished, and showed rapid recovery of growth rate, mainly via duplication or mutation of the proline-tRNA ligase gene proS. Growth assays and in vitro aminoacylation assays showed that G37-unmodified tRNAPro is aminoacylated less efficiently than m1G37-modified tRNAPro, and that growth of trmD mutant strains can be largely restored by single mutations in proS that restore aminoacylation of G37-unmodified tRNAPro. These results show that inefficient aminoacylation of tRNAPro is the main reason for growth defects observed in trmD mutant strains and that proS may act as a gatekeeper of translational accuracy, preventing the use of error-prone unmodified tRNAPro in translation. Our work shows the utility of experimental evolution for uncovering the hidden functions of essential genes and has implications for the development of antibiotics targeting TrmD.  相似文献   

13.
Cell growth and tRNA-lys4 synthesis in mouse 3T3 cells   总被引:2,自引:0,他引:2  
The RPC-5 chromatographic profiles of lys-tRNA were analyzed during the growth of 3T3 cells in culture. An inverse relationship was seen between tRNA2lys and tRNA4lys which was markedly influenced by medium changes. This interchange of tRNA2lys and tRNA4lys could be controlled by altering the levels of serum in the medium, or more precisely by altering the serum to cell ratio. A different change in lys-tRNA distribution was seen when the cells reached confluency. The amounts of tRNA2lys, tRNA3lys and tRNA4lys all decreased with a corresponding increase in either tRNA5lys or tRNA6lys. An identical change in lys-tRNA could be produced by shifting sparse cells into a medium containing 10% calf plasma instead of 10% serum. Both tRNAlys profiles and cell growth were returned to normal when the cells were returned to medium with 10% fetal calf serum (FCS) or 10% calf plasma and fibroblast growth factor (FGF). A third alteration in tRNAlys profiles was seen by the addition of cAMP to the cultures. A decrease in tRNA5lys and a corresponding increase in tRNA6lys was seen upon the addition of 10?3 M db-cAMP and was accentuated by the simultaneous addition of 10?3 M methyl isobutylxanthine.These data are consistent with an ordered sequence of tRNAlys modification involving tRNA2lys, tRNA3lys, tRNA4lys, tRNA5Blys and tRNA6lys. Several of the factors which control proliferation appear to control the activity of different tRNA-modifying enzymes in this tRNAlys pathway thereby controlling the levels of tRNA4lys, a tRNA previously shown to correlate directly with the proliferative rate of cells.  相似文献   

14.
Strains of Escherichia coli have been produced which express very high levels of the tRNAleu1 isoacceptor. This was accomplished by transforming cells with plasmids containing the leuV operon which encodes three copies of the tRNALeu1 gene. Most transformants grew very slowly and exhibited a 15-fold increase in cellular concentrations of tRNALeu1 As a result, total cellular tRNA concentration was approximately doubled and 56% of the total was tRNALeu1. We examined a number of parameters which might be expected to be affected by imbalances in tRNA concentration: in vivo tRNA charging levels, misreading, ribosome step time, and tRNA modification. Surprisingly, no increase in intracellular ppGpp levels was detected even though only about 40% of total leucyl tRNA was found to be charged in vivo. Gross ribosomal misreading was not detected, and it was shown that ribosomal step times were reduced between two- and threefold. Analyses of leucyl tRNA isolated from these slow-growing strains showed that at least 90% of the detectable tRNALeu1 was hypomodified as judged by altered mobility on RPC-5 reverse-phase columns, and by specific modification assays using tRNA(m1G)-methyltransferase and pseudo-uridylate synthetase. Analysis of fast-growing revertants demonstrated that tRNA concentration per se may not explain growth inhibition because selected revertants which grew at wild-type growth rates displayed levels of tRNA comparable to that of control strains bearing the leuV operon. A synthetic tRNALeu1 operon under the control of the T7 promoter was prepared which, when induced, produced six- to sevenfold increases in tRNALeu1 levels. This level of tRNALeu1 titrated the modification system as judged by RPC-5 column chromatography. Overall, our results suggest that hypomodified tRNA may explain, in part, the observed effects on growth, and that the protein-synthesizing system can tolerate an enormous increase in the concentration of a single tRNA.  相似文献   

15.
The RPC-5 chromatographic profiles of lys-tRNA were analyzed during the growth of 3T3 cells in culture. An inverse relationship was seen between tRNA2lys and tRNA4lys which was markedly influenced by medium changes. This interchange of tRNA2lys and tRNA4lys could be controlled by altering the levels of serum in the medium, or more precisely by altering the serum to cell ratio. A different change in lys-tRNA distribution was seen when the cells reached confluency. The amounts of tRNA2lys, tRNA3lys and tRNA4lys all decreased with a corresponding increase in either tRNA5lys or tRNA6lys. An identical change in lys-tRNA could be produced by shifting sparse cells into a medium containing 10% calf plasma instead of 10% serum. Both tRNAlys profiles and cell growth were returned to normal when the cells were returned to medium with 10% fetal calf serum (FCS) or 10% calf plasma and fibroblast growth factor (FGF). A third alteration in tRNAlys profiles was seen by the addition of cAMP to the cultures. A decrease in tRNA5lys and a corresponding increase in tRNA6lys was seen upon the addition of 10−3 M db-cAMP and was accentuated by the simultaneous addition of 10−3 M methyl isobutylxanthine.These data are consistent with an ordered sequence of tRNAlys modification involving tRNA2lys, tRNA3lys, tRNA4lys, tRNA5Blys and tRNA6lys. Several of the factors which control proliferation appear to control the activity of different tRNA-modifying enzymes in this tRNAlys pathway thereby controlling the levels of tRNA4lys, a tRNA previously shown to correlate directly with the proliferative rate of cells.  相似文献   

16.
17.
N7-methylguanine at position 46 (m7G46) in tRNA is produced by tRNA (m7G46) methyltransferase (TrmB). To clarify the role of this modification, we made a trmB gene disruptant (ΔtrmB) of Thermus thermophilus, an extreme thermophilic eubacterium. The absence of TrmB activity in cell extract from the ΔtrmB strain and the lack of the m7G46 modification in tRNAPhe were confirmed by enzyme assay, nucleoside analysis and RNA sequencing. When the ΔtrmB strain was cultured at high temperatures, several modified nucleotides in tRNA were hypo-modified in addition to the lack of the m7G46 modification. Assays with tRNA modification enzymes revealed hypo-modifications of Gm18 and m1G37, suggesting that the m7G46 positively affects their formations. Although the lack of the m7G46 modification and the hypo-modifications do not affect the Phe charging activity of tRNAPhe, they cause a decrease in melting temperature of class I tRNA and degradation of tRNAPhe and tRNAIle. 35S-Met incorporation into proteins revealed that protein synthesis in ΔtrmB cells is depressed above 70°C. At 80°C, the ΔtrmB strain exhibits a severe growth defect. Thus, the m7G46 modification is required for cell viability at high temperatures via a tRNA modification network, in which the m7G46 modification supports introduction of other modifications.  相似文献   

18.
N 6-Threonylcarbamoyladenosine (t6A) is a universal and pivotal tRNA modification. KEOPS in eukaryotes participates in its biogenesis, whose mutations are connected with Galloway-Mowat syndrome. However, the tRNA substrate selection mechanism by KEOPS and t6A modification function in mammalian cells remain unclear. Here, we confirmed that all ANN-decoding human cytoplasmic tRNAs harbor a t6A moiety. Using t6A modification systems from various eukaryotes, we proposed the possible coevolution of position 33 of initiator tRNAMet and modification enzymes. The role of the universal CCA end in t6A biogenesis varied among species. However, all KEOPSs critically depended on C32 and two base pairs in the D-stem. Knockdown of the catalytic subunit OSGEP in HEK293T cells had no effect on the steady-state abundance of cytoplasmic tRNAs but selectively inhibited tRNAIle aminoacylation. Combined with in vitro aminoacylation assays, we revealed that t6A functions as a tRNAIle isoacceptor-specific positive determinant for human cytoplasmic isoleucyl-tRNA synthetase (IARS1). t6A deficiency had divergent effects on decoding efficiency at ANN codons and promoted +1 frameshifting. Altogether, our results shed light on the tRNA recognition mechanism, revealing both commonality and diversity in substrate recognition by eukaryotic KEOPSs, and elucidated the critical role of t6A in tRNAIle aminoacylation and codon decoding in human cells.  相似文献   

19.
Mitochondrial gene expression uses a non‐universal genetic code in mammals. Besides reading the conventional AUG codon, mitochondrial (mt‐)tRNAMet mediates incorporation of methionine on AUA and AUU codons during translation initiation and on AUA codons during elongation. We show that the RNA methyltransferase NSUN3 localises to mitochondria and interacts with mt‐tRNAMet to methylate cytosine 34 (C34) at the wobble position. NSUN3 specifically recognises the anticodon stem loop (ASL) of the tRNA, explaining why a mutation that compromises ASL basepairing leads to disease. We further identify ALKBH1/ABH1 as the dioxygenase responsible for oxidising m5C34 of mt‐tRNAMet to generate an f5C34 modification. In vitro codon recognition studies with mitochondrial translation factors reveal preferential utilisation of m5C34 mt‐tRNAMet in initiation. Depletion of either NSUN3 or ABH1 strongly affects mitochondrial translation in human cells, implying that modifications generated by both enzymes are necessary for mt‐tRNAMet function. Together, our data reveal how modifications in mt‐tRNAMet are generated by the sequential action of NSUN3 and ABH1, allowing the single mitochondrial tRNAMet to recognise the different codons encoding methionine.  相似文献   

20.
Abstract

The existence of specific sites in tRNA for the binding of divalent cations has been seriously questioned by electrostatic considerations [Leroy & Guéron (1979) Biopolymers, 16, 2429–2446], However, our earlier studies of the binding of Mg2+ and Mn2+ to yeast tRNATyr have indicated that spermine creates new binding sites for divalent cations [Weygand-Durasevi? et al. (1977) Biochim. Biophys. Acta, 479, 332–344; Nöthig-Laslo et al. (1981) Eur. J. Biochem. 117, 263–267]. We have now used yeast tRNATyr, spin labeled at the hypermodified purine (i6A-37) in the anticodon loop, to study the effect of spermine on the binding of manganese ions. The presence of eight spermine molecules per tRNATyr at high ionic strength (0.2 M NaCl, 0.05 M triethanolamine-HCl) and at low temperature (7°C) enhances the binding of manganese to tRNATyr. This effect could not be explained by electrostatic binding. The initial binding of manganese to tRNATyr affects the motional properties of the spin label indicating a change of the conformation of the anticodon loop. From the absence of the paramagnetic effect of manganese on the ESR spectra of the spin label one can conclude that the first binding site for manganese is at a distance from i6A-37, influencing the spin label motion through a long-range effect. The enhancement of the binding of manganese to tRNATyr by spermine is lost upon destruction of its specific macromolecular structure and it does not occur in single stranded or in double-stranded polynucleotides. The observed effect can be explained by the binding of Mn2+ to new sites, created by the binding of spermine, which are specific for the macromolecular structure of tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号