首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antisense and antigene oligonucleotides (ONs) are attractive drugs for gene therapy, but major limiting factors for their routine use are inefficient cellular uptake and low accessibility to the target sites. Adding various lipophilic conjugates to the ON improves intracellular delivery as has been previously reported.We studied the cellular delivery of various ON modifications, as well as their cytosolic and nuclear distribution in mammalian Hep2-EGFP-NLS cell line. We compared uptake efficacy of ON and LNA, both conjugated with cholesterol at the 5′ end. All ONs were 3′ labeled with fluorescent Cy5 dye. We made a comparison of the ONs uptake efficacy and the kinetics, both adding ONs to the culture medium, and using streptolysin-O (SL-O) permeabilization.The cellular uptake of each ON used in this study was visualized by fluorescent microscopy. We confirmed the results by FACS analysis. We determined the ratio between initial ON-chol concentration (0.4 μM) and the final amount in nucleus.SL-O can highly improve kinetics of ON delivery; not only into the cytoplasm but also to the nucleus, the presumed site of antigene ON action. The most effective nuclear uptake was observed when ON conjugated with cholesterol (ON-chol) and SL-O was used. Nuclear distribution of ON was reached within few minutes. In contrast, ON simply added to the medium reached cytoplasm only and the process of delivery took several hours. (Mol Cell Biochem 276: 61–69, 2005)  相似文献   

2.

The synthesis and properties of oligonucleotides (ONs) containing 9-(2,3,4-trihydroxybutyl)adenine, A C2 and A C3, are described. The ON containing A C2 involves the 3′ → 4′ and 3′ → 5′ phosphodiester linkages in the strand, whereas that containing A C3 possesses the 3′ → 4′ and 2′ → 5′ phosphodiester linkages. It was found that incorporation of the analogs, A C2 or A C3, into ONs significantly reduces the thermal and thermodynamic stabilities of the ON/DNA duplexes, but does not largely decrease the thermal and thermodynamic stabilities of the ON/RNA duplexes as compared with the case of the ON/DNA duplexes. It was revealed that the base recognition ability of A C2 is greater than that of A C3 in the ON/RNA duplexes.  相似文献   

3.
Sequence-dependent cytotoxicity of second-generation oligonucleotides   总被引:1,自引:1,他引:0  
In this study, we have examined the potential of second-generation antisense chimeric 2′-O-(2-methoxy)ethyl/DNA phosphorothioate oligonucleotides (ONs) to affect cell growth through non-antisense mechanisms. Evaluation of a series of ONs demonstrated that only a small number were cytotoxic at concentrations close to those required for antisense activity. Toxicity of the ONs appeared to be sequence dependent and could be affected by base and backbone modifications. Caspase-3 activation occurs with some ONs and it is most likely secondary to necrosis rather than apoptosis, since cells treated with toxic ONs did not show chromatin condensation, but did exhibit high-extracellular lactate dehydrogenase activity. Caspase-3 activation does not correlate with and appears not to be required for the inhibition of cell proliferation. Toxicity was only observed when ONs were delivered intracellularly. The mechanism by which one of the most cytotoxic ON produces cytotoxicity was investigated in more detail. Treatment with the cytotoxic ON caused disruption of lysosomes and Pepstatin A, a specific inhibitor of aspartic proteases, reduced the cytotoxicity of the ON. Reduction of lysosomal aspartic protease cathepsin D by prior treatment with cathepsin D-specific antisense ON did not attenuate the cytotoxicity, suggesting that other aspartic proteases play a crucial role in the cellular proliferation inhibition by ONs.  相似文献   

4.
To understand the parameters required for designing potent and specific antisense C-5 propynyl-pyrimidine-2'-deoxyphosphorothioate-modified oligonucleotides (C-5 propyne ONs), we have utilized a HeLa line that stably expresses luciferase under tight control of a tetracycline-responsive promoter. Using this sensitive and regulatable cell-based system we have identified five distinct antisense ONs targeting luciferase and have investigated the role that ON length, target mismatches, compound stability and intracellular RNA levels play in affecting antisense potency. We demonstrate that C-5 propyne ONs as short as 11 bases retained 66% of the potency demonstrated by the parent 15 base compound, that a one base internal mismatch between the antisense ON and the luciferase target reduced the potency of the antisense ON by 43% and two or more mismatches completely inactivated the antisense ON and that C-5 propyne ONs have a biologically active half-life in tissue culture of 35 h. In addition, by regulating the intracellular levels of the luciferase mRNA over 20-fold, we show that the potency of C-5 propyne ONs is unaffected by changes in the expression level of the target RNA. These data suggest that low and high copy messages can be targeted with equivalent potency using C-5 propyne ONs.  相似文献   

5.
The widespread utilization of gene silencing techniques, such as antisense, is impeded by the poor cellular delivery of oligonucleotides (ONs). Rational design of carriers for enhanced ON delivery demands a better understanding of the role of the vector on the extent and time course of antisense effects. The aim of this study is to understand the effects of polymer molecular weight (MW) and ON backbone chemistry on antisense activity. Complexes were prepared between branched polyethyleneimine (PEI) of various MWs and ONs of phosphodiester and phosphorothioate chemistries. We measured their physico-chemical properties and evaluated their ability to deliver ONs to cells, leading to an antisense response. Our key finding is that the antisense activity is not determined solely by PEI MW or by ON chemistry, but rather by the interplay of both factors. While the extent of target mRNA down-regulation was determined primarily by the polymer MW, dynamics were determined principally by the ON chemistry. Of particular importance is the strength of interactions between the carrier and the ON, which determines the rate at which the ONs are delivered intracellularly. We also present a mathematical model of the antisense process to highlight the importance of ON delivery to antisense down-regulation.  相似文献   

6.
Kren BT  Wong PY  Steer CJ 《DNA Repair》2003,2(5):531-546
Site-specific single-nucleotide changes in chromosomal DNA of eukaryotic cells have been achieved using chimeric RNA/DNA oligonucleotides (ONs) and short single-stranded (SS) ONs. However, a variety of human diseases originate from single-point mutations in the genome of mitochondrial DNA. We previously demonstrated that extracts from highly purified rat liver mitochondria possess the essential enzymatic activity to mediate targeted single-nucleotide changes using chimeric ONs in vitro. However, different factor(s) and/or mechanism(s) appear to be involved in SS and RNA/DNA ON mediated DNA repair. Because mitochondria are deficient in certain factors involved in nuclear DNA repair pathways, we investigated whether mitochondria possess the enzymatic machinery for SS ON mediated DNA alterations. Using in vitro DNA repair assays based on mutagenized plasmids and a bacterial read-out system, SS ONs were designed to correct the point mutations in the genes encoded by the different plasmids. In this system, protein extracts from purified rat liver mitochondria and nuclei catalyzed similar levels of site-specific nucleotide modifications using SS ONs. Interestingly, extracts isolated from quiescent liver mediated significantly higher conversion rates than those isolated from regenerating liver. The results suggest that mitochondria contain the factors necessary for correction of single-point mutations by SS ONs. In addition, at least some are different than those required for DNA repair by RNA/DNA ONs. Moreover, correction with SS ONs appears to occur one strand at a time suggesting that repair of the DNA substrate involves strand transfer. The ability of unmodified SS ONs to mediate targeted alteration of the mitochondrial genome may provide a new tactic for treatment of certain mitochondrial-based diseases.  相似文献   

7.
We have optimized surface plasmon resonance (SPR) biosensor technology for a rapid, direct, and low-consumption label-free multianalyte screening of synthetic oligonucleotides (ONs) with modified internucleotide linkages potentially applicable in antisense therapy. Monitoring of the ONs hybridization is based on the formation of complex between the natural oligonucleotide probe immobilized on the sensor surface and the ON in solution in contact with the sensor surface. An immobilization chemistry utilizing the streptavidin-biotin interaction was employed to obtain desired ligand density and high hybridization efficiency. It was demonstrated that the sensor is capable of detecting complementary 23-mer ONs in concentrations as low as 0.1 nM with high specificity and reproducibility.  相似文献   

8.
Binding of complementary oligonucleotides (ONs) with α‐sarcin loop region (2638–2682) of Escherichia coli 23S rRNA was investigated. Four of the tested pentadecanucleotides efficiently bound to target sequences with association rate and equilibrium constants ~ 103 M? 1s? 1 and 107 M? 1, respectively. ON S5 (CGAGAGGACCGGAGU) complementary to the sequence 2658–2672 displayed the highest affinity to the target. Activation energy for binding of ON S5 was measured to be 11 kcal/mol; this value corresponds to ~ 10% of the calculated enthalpy of the local RNA structure unfolding in the presence of this oligonucleotide. The activation energy value is evidence for the heteroduplex formation to occur via strand displacement pathway; the initiation of heteroduplex formation requires disruption of 1–2 base pairs in RNA hairpin.  相似文献   

9.
HIV integrase (IN) catalyzes the insertion of proviral DNA into the host cell chromosome. While IN has strict sequence requirements for the viral cDNA ends, the integration site preference has been shown to be very diverse. Here, we mapped the HIV IN strand transfer reaction requirements using various short oligonucleotides (ON) that mimic the target DNA. Most double stranded DNA dodecamers served as excellent IN targets with variable integration efficiency depending mostly on the ON sequences. The preferred integration was lost with any changes in the geometry of the DNA double helical structures. Various hairpin-loop-forming ONs also served as efficient integration targets. Similar integration preferences were also observed for ONs, in which the nucleotide hairpin loop was replaced with a flexible aliphatic linker. The integration biases with all target DNA structures tested were significantly influenced by changes in the resulting secondary ON structures.  相似文献   

10.
The synthesis and properties of oligonucleotides (ONs) containing 9-(2,3,4-trihydroxybutyl)adenine, A(C2) and A(C3), are described. The ON containing A(C2) involves the 3'-->4' and 3-->5' phosphodiester linkages in the strand, whereas that containing A(C3) possesses the 3'-->4' and 2'-->5' phosphodiester linkages. It was found that incorporation of the analogs, A(C2) or A(C3), into ONs significantly reduces the thermal and thermodynamic stabilities of the ON/DNA duplexes, but does not largely decrease the thermal and thermodynamic stabilities of the ON/RNA duplexes as compared with the case of the ON/DNA duplexes. It was revealed that the base recognition ability of A(C2) is greater than that of A(C3) in the ON/RNA duplexes.  相似文献   

11.
Although double-stranded DNA (dsDNA) has been shown to bind to zwitterionic lipids, it has been reported that this association is stronger for disordered (L(alpha)) phase lipids than for well-ordered (L(beta)) lipids. In this work, the interaction of single-strand phosphorothioate oligonucleotides (ONs) with unilamellar liposomes of saturated and unsaturated zwitterionic phosphocholines (PCs) and phosphoroethylamine (PE) was investigated. It is shown that the association of phosphorothioate ONs to diacyl glycerophosphocholines is strong, but only for L(beta) phase or otherwise ordered bilayers. There is no measurable affinity for PE lipids. The apparent affinity of three different phosphorothioate ONs for L(beta) phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) has been measured and the dissociation constants were on the order of 10(-7) M. Purine-rich ON sequences had stronger binding to DPPC liposomes than did pyrimidine-rich sequences, but there were other sequence-dependent factors. This exceptionally high affinity could be an important consideration in ON uptake, delivery, and biodistribution.  相似文献   

12.
During the last decade, cell penetrating peptides (CPP) have been extensively used to mediate the cellular delivery of non-permeant biomolecules, including oligonucleotides (ONs). A covalent linkage between the CPP and the transported ON is required to mediate efficient cell internalization, and a disulfide bridge between the CPP and the ON has been shown to induce the most potent biological response. In this paper, we describe the activation. In a one step process of the sulfhydryl function from a synthon commercially available for ON synthesis. In addition, since the highly cationic nature of currently used CPP caused serious precipitation problems during the coupling step, we further improved the method by adsorbing the crude activated ON on an anion exchange matrix prior to specific peptide coupling.  相似文献   

13.
Targeted mutagenesis directed by oligonucleotides (ONs) is a promising method for manipulating the genome in higher eukaryotes. In this study, we have compared gene editing by different ONs on two new target sequences, the eBFP and the rd1 mutant photoreceptor βPDE cDNAs, which were integrated as single copy transgenes at the same genomic site in 293T cells. Interestingly, antisense ONs were superior to sense ONs for one target only, showing that target sequence can by itself impart strand-bias in gene editing. The most efficient ONs were short 25 nt ONs with flanking locked nucleic acids (LNAs), a chemistry that had only been tested for targeted nucleotide mutagenesis in yeast, and 25 nt ONs with phosphorothioate linkages. We showed that LNA-modified ONs mediate dose-dependent target modification and analyzed the importance of LNA position and content. Importantly, when using ONs with flanking LNAs, targeted gene modification was stably transmitted during cell division, which allowed reliable cloning of modified cells, a feature essential for further applications in functional genomics and gene therapy. Finally, we showed that ONs with flanking LNAs aimed at correcting the rd1 stop mutation could promote survival of photoreceptors in retinas of rd1 mutant mice, suggesting that they are also active in vivo.  相似文献   

14.
Oligodeoxyribonucleotides (ONs) containing two incorporations of 2 ′-N-(pyren-1-yl)acetyl-2 ′-amino-α-L-LNA monomer Y are sensitive probes for detection of single nucleotide polymorphisms (SNP) in DNA. In addition, the ability of ONs containing pyrene-functionalized 2 ′-amino-α-L-LNA monomers ( W-Z ) to stabilize duplexes with an abasic site is demonstrated.  相似文献   

15.
Oligomers of thiophene are widely studied compounds for their electronic and optoelectronic properties. Despite their strong fluorescence, their use as markers for biomolecules, especially for oligonucleotides (ONs), is still largely unexplored. Here, we describe the synthesis of a series of ON molecular beacons employing different oligothiophenes as fluorescent probes and discuss their fluorescence emissions in comparative experiments with and without dabcyl as a quencher, in their hairpin and linear conformations, and as duplexes after hybridization with a complementary target.  相似文献   

16.
To be effective in vivo, antisense oligonucleotides (AS ON) should be nuclease resistant, form stable ON/RNA duplexes and support ribonuclease H mediated heteroduplex cleavage, all with negligible non-specific effects on cell function. We report herein that AS ONs containing a 2'-deoxy-2'-fluoro-beta-D-arabinonucleic acid (2'F-ANA) sugar modification not only meet these criteria, but have the added advantage of maintaining high intracellular concentrations for prolonged periods of time which appears to promote longer term gene silencing. To demonstrate this, we targeted the c-MYB protooncogene's mRNA in human leukemia cells with fully phosphorothioated 2'F-ANA-DNA chimeras (PS-2'FANA-DNA) and compared their gene silencing efficiency with AS ON containing unmodified nucleosides (PS-DNA). When delivered by nucleofection, chemically modified ON of both types effected a >90% knockdown of c-MYB mRNA and protein expression, but the PS-2'F-ANA-DNA were able to accomplish this at 20% of the dose of the PS-DNA, and in contrast to the PS-AS DNA, their silencing effect was still present after 4 days after a single administration. Therefore, our data demonstrate that PS-2'F-ANA-DNA chimeras are efficient gene silencing molecules, and suggest that they could have significant therapeutic potential.  相似文献   

17.
Retroviral integrase participates in two catalytic reactions, which require interactions with the two ends of the viral DNA in the 3′processing reaction, and with a targeted host DNA in the strand transfer reaction. The 3′-hydroxyl group of 2′-deoxyadenosine resulting from the specific removing of GT dinucleotide from the viral DNA in the processing reaction provides the attachment site for the host DNA in a transesterification reaction. We synthesized oligonucleotides (ONs) of various lengths that mimic the processed HIV-1 U5 terminus of the proviral long terminal repeat (LTR) and are ended by 2′-deoxyadenosine containing a 3′-O-phosphonomethyl group. The duplex stability of phosphonomethyl ONs was increased by covalent linkage of the modified strand with its complementary strand by a triethylene glycol loop (TEG). Modified ONs containing up to 10 bases inhibited in vitro the strand transfer reaction catalyzed by HIV-1 integrase at nanomolar concentrations.  相似文献   

18.
The link of proto-oncogenic protein Wnt-1 production with NF-κB activation has been functionally demonstrated in PC12 cells, a rat pheochromocytoma cell line of neural crest lineage, while it is not yet verified in human cells. The link can be indirectly supported in our previous report that functional proteomics identifies enhanced expression of NF-κB-associated Wnt-1 production in human hepatocellular carcinoma tissues. This study aimed to further validate this link in human cells using anti-sense strategy. The effects of sequence-specific anti-sense morpholino oligonucleotides (ONs) targeting against pre-mRNA sequences of human p50 and p65 subunits of NF-κB as well as Wnt-1 genes were investigated. It revealed that all the three morpholino ONs inhibited NF-κB activation in human hepatoblastoma cell line HepG2 cells along with decreased Wnt-1 production. Chromatin immunoprecipitation assay ascertained the direct binding of NF-κB-p50 to the Wnt-1 promoter. Additionally, anti-P50 and anti-P65 morpholino ONs also repressed the phosphorylation of Iκ Bα which temporarily correlated with the inhibition of NF-κB activation accompanied by decreased Wnt-1 production by HepG2 cells. In summary, NF-κB activation is critically involved in the production of Wnt-1 by HepG2 cells. These results may have important oncology implications in treating patients with NF-κB-associated Wnt-1-producing cancers. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
Abstract

The two ribo-configured nucleosides 1-(3-C-allyl-2–0-methyl-β-D-ribo-pentofuranosyl)thymine 3 and (1S,5R,6R,8R)-5-hydroxy-6-(hydroxymethyl)-1-methoxy-8-(thymin-1-yl)-2,7-dioxabicyclo[3.3.0]octane 6 have been transformed into their corresponding phosphoramidites, 5 and 8 respectively, and used as building blocks for the synthesis of modified oligonucleotides. The oligonucleotides were shown to hybridize with decreased binding affinity towards complementary single stranded DNA and RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号