首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2′-O-Carbamoyluridine (Ucm) was synthesized and incorporated into DNAs and 2′-O-Me-RNAs. The oligonucleotides incorporating Ucm formed less stable duplexes with their complementary and Ucm–U, Ucm–C single-base mismatched DNAs and RNAs in comparison with those without the carbamoyl group. On the contrary, the Tm analyses revealed that the duplexes with a mismatched Ucm–G base pair showed almost the same thermostability as the corresponding unmodified duplexes. Molecular dynamics (MD) simulations of the Ucm-modified 2′-O-Me-RNA/RNA duplexes with Ucm–G mismatched base pair suggested that the carbamoyl group could participate in the Ucm–G base pair by an additional intermolecular hydrogen bond between the carbamoyl oxygen and the H2 of the guanine base.  相似文献   

2.
Abstract

Parallel-stranded (ps) oligonucleotide duplexes are described containing isoguanine-cytosine and/or 5-methylisocytosine-guanine base pairs. A parallel hybrid is also formed when 5-aza-7-deazaguanine base pairs with guanine while the base pair with isoguanine results in an antiparallel duplex. Oligomers such as d(T4isoG4T4) form selfassembled tetraplexes which show a cation selectivity different from that of the G-quartet.  相似文献   

3.
Abstract

The pyrazolo[3,4-d]pyrimidine-4,6-diamine nucleosides 2b-d stabilize the dA-dT base pair significantly when the dA-residue is replaced. Oligonucleotide duplexes incorporating 2b-d show a 4–6°C T m increase per modification. The 7-bromo compound 2b harmonizes the stability of the dA-dT vs. the dG-dC pair. According to this the stability of such duplexes depends no longer on the base pair composition of a DNA molecule.  相似文献   

4.
DNA probes with conjugated minor groove binder (MGB) groups form extremely stable duplexes with single-stranded DNA targets, allowing shorter probes to be used for hybridization based assays. In this paper, sequence specificity of 3′-MGB probes was explored. In comparison with unmodified DNA, MGB probes had higher melting temperature (Tm) and increased specificity, especially when a mismatch was in the MGB region of the duplex. To exploit these properties, fluorogenic MGB probes were prepared and investigated in the 5′-nuclease PCR assay (real-time PCR assay, TaqMan assay). A 12mer MGB probe had the same Tm (65°C) as a no-MGB 27mer probe. The fluorogenic MGB probes were more specific for single base mismatches and fluorescence quenching was more efficient, giving increased sensitivity. A/T rich duplexes were stabilized more than G/C rich duplexes, thereby leveling probe Tm and simplifying design. In summary, MGB probes were more sequence specific than standard DNA probes, especially for single base mismatches at elevated hybridization temperatures.  相似文献   

5.
Abstract

The fluorescence and the base pairing properties of 8-aza-7-deaza-2′-deoxyisoinosine (1) are described and compared with those of 2′-deoxyisoinosine (2). The corresponding phosphoramidites (11,12) are synthesized using the diphenyl-carbamoyl (DPC) residue for the 2-oxo group protection. The nucleosides 1 and 2 base pair with 2′-deoxy-5-methylisocytidine in DNA duplexes with antiparallel chain orientation and with 2′-deoxycytidine in a parallel DNA. These base pairs are less stable than the canonical dA-dT pair and that of 2′-deoxyinosine (4) with 2′-deoxycytidine. The fluorescence of the nucleosides 1 and 2 is quenched (~95%) in duplex DNA. The residual fluorescence is used to determine the Tm-values, which are found to be the same as determined UV-spectrophotometrically.  相似文献   

6.
Abstract

Tridecamers containing a central no-base residue (X) have been synthesized and hybridized to their complementary strands, so as to constitute duplexes consisting of two hexamers separated by central mismatched X-A or X-T pairs. The effect of the introduction of this deoxyribose derivative on duplex stability was investigated by measuring UV absorbance as a function of salt concentration and temperature. As expected, the duplexes containing the abnormal base pairs (X-T and X-A) are less stable when compared to the totally complementary duplexes (A-T and T-A). The X-T mismatched duplex shows the most unstable thermodynamical behavior. The conformational changes of these duplexes were studied by IR spectroscopy in condensed phase as a function of water content. At high relative humidity, the IR spectra show that these tridecamers form B-type double stranded duplex structures. If the water content is decreased, only the duplexes

m5 CGm5CGCTXAGCTTC

GCGCGAATCGAAG

and, to a lesser degree

m5 CGm5 CGCTXAGCTTC

GCGCGATTCGAAG

undergo a partial B→Z transition involving the methylated hexamer, the conformation of the second segment remaining of the B type. These results show that only one apurinic residue leads to a flexible junction between B and Z forms in a short duplex containing 5-methyl-2′- deoxycytidines.  相似文献   

7.
The dissociation kinetics of 19 base paired oligonucleotide-DNA duplex containing a various single mismatched base pair are studied on dried agarose gels. The kinetics of the dissociation are first order under our experimental conditions. The incorporation of a single mismatched base pair destabilizes the DNA duplexes to some extent, the amount depending on the nature of the mismatched base pair. G-T and G-A mismatches slightly destabilize a duplex, while A-A, T-T, C-T and C-A mismatches significantly destabilize it. The activation energy for the overall dissociation processes for these oligonucleotide-DNA duplexes containing 19 base pairs is 52 +/- 2 Kcal mol-1 as determined from the slope of Arrhenius plot.  相似文献   

8.
The synthesis and incorporation into oligodeoxy­nucleotides of two novel, conformationally restricted abasic (AB) site analogs are described. The stability of oligonucleotide 18mer duplexes containing one such AB site opposite any of the four natural DNA bases was investigated by UV melting curve analysis and compared to that of duplexes containing a conformationally flexible propanediol unit 1 or a tetrahydrofuran unit 2 as an AB site analog. No major differences in the melting temperatures (ΔTm 0–3°C) between the different abasic duplexes were observed. All AB duplexes were found to have Tms that were lower by 9–15°C relative to a fully matched 18mer control duplex, and by 4–10°C relative to the corresponding 19mer duplexes in which the AB site is replaced by a mismatched nucleobase. Thus we conclude that the loss of stability of a duplex that is encountered by removal of a nucleobase from the stack cannot be compensated with conformational restriction of the AB site. From the van’t Hoff transition enthalpies obtained from the melting curves, it appears that melting cooperativity is higher for the duplexes containing the conformationally rigid AB sites. Fluorescence quenching experiments with duplexes containing the fluorescent base 2-amino­purine (2AP) opposite the AB sites showed a weak tendency towards more efficient stacking of this base in duplexes containing the conformationally constrained AB sites. Thus, such AB sites may structurally stabilize the cavity formed by the removal of a base. Potential applications emerging from the properties of such conformationally constrained AB sites in DNA diagnostics are discussed.  相似文献   

9.
A combination of NOESY and ROESY experiments show that the higher stabilities (Tm) of phenazine tethered matched (2) and G-A mismatched (4) DNA duplexes are due to the decrease of the exchange-rate (i.e. increase of the life-time) of the imino-protons and the reduced water activity in their minor grooves compared to their non-tethered counterparts (1) and (3).  相似文献   

10.
Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, Tm, and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (Tm(F/T)?Tm(εA/T)?Tm(Hx/T)?Tm(A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme–substrate complex is not the bottleneck controlling the catalytic activity of AAG.  相似文献   

11.
The effect of structural factors on the stability of duplexes formed by DNA minor groove binders conjugated with oligonucleotide mono- or diphosphoramidates of the general formula Oligo-MGBm (where Oligo is an oligonucleotide; m = 1 or 2; MGB is -L(Py)2R, -L(Py)4R, -L(Im)4R, or -L(Py)4NH(CH2)3CO(Py)4R; Py is a 4-aminopyrrole-2-carboxylic acid residue; L is a -aminobutyric acid or an -aminocaproic acid residue, R = OEt, NH(CH2)6NEt2, or NH(CH2)6N+Me3) was studied by the method of thermal denaturation. The mode of binder interaction with the minor groove depends on the conjugate structure; it may be of the parallel head to head type for bisphosphoramidates and of the antiparallel head to tail type for monophosphoramidates of a hairpin structure. The effects of the duplexes with parallel orientation (bisphosphoramidates, MGB is L(Py)4R, m = 2) and those of the hairpin structure with the antiparallel orientation (monophosphoramidates, MGB is L(Py)4(CH2)3CO(Py)4R, m = 1) on T m values were close. The influence of the linker (L) and substituent (R) structures upon T m was more pronounced for monophosphoramidate (MGB is L(Py)nR, m = 1) than for bisphosphoramidate (MGB is L(Py)nR, m = 2). No more than two oligopyrrolecarboxamide residues (either in parallel or antiparallel orientations) can be incorporated into the duplex minor groove. Moreover, it was shown by the example of monophosphoramidates (Oligo-L(Py)4R and Oligo-L(Py)4NH(CH2)3CO(Py)4R) that the addition of a second ligand capable of incorporation into the minor groove increased T m of the corresponding duplex in comparison with the duplex formed by the starting monophosphoramidate. At the same time, the introduction of a ligand incapable of incorporating decreased the T m value. The mode of interaction of the conjugated binder with the oligonucleotide duplex is determined by its structure. For example, dipyrrolecarboxamide containing an ethoxy group at the binder C-end stabilizes the duplex due to stacking interaction with the terminal A · T pair, whereas tetrapyrrolecarboxamides stabilize the duplex by incorporation into the minor groove.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 2, 2005, pp. 159–166.Original Russian Text Copyright © 2005 by Ryabinin, Butorin, Elen, Denisov, Pyshnyi, Sinyakov.  相似文献   

12.
Metal ion-nucleic acid interactions have attracted considerable interest for their involvement in structure formation and catalytic activity of nucleic acids. Although interactions between metal ion and mismatched base pair duplex are important to understand mechanism of gene mutations related to heavy metal ions, they have not been well-characterized. We recently found that the Ag+ ion stabilized a C:C mismatched base pair duplex DNA. A C–Ag–C metal-mediated base pair was supposed to be formed by the binding between the Ag+ ion and the C:C mismatched base pair to stabilize the duplex. Here, we examined specificity, thermodynamics and structure of possible C–Ag–C metal-mediated base pair. UV melting indicated that only the duplex with the C:C mismatched base pair, and not of the duplexes with the perfectly matched and other mismatched base pairs, was specifically stabilized on adding the Ag+ ion. Isothermal titration calorimetry demonstrated that the Ag+ ion specifically bound with the C:C base pair at 1:1 molar ratio with a binding constant of 106 M−1, which was significantly larger than those for nonspecific metal ion-DNA interactions. Electrospray ionization mass spectrometry also supported the specific 1:1 binding between the Ag+ ion and the C:C base pair. Circular dichroism spectroscopy and NMR revealed that the Ag+ ion may bind with the N3 positions of the C:C base pair without distorting the higher-order structure of the duplex. We conclude that the specific formation of C–Ag–C base pair with large binding affinity would provide a binding mode of metal ion-DNA interactions, similar to that of the previously reported T-Hg-T base pair. The C–Ag–C base pair may be useful not only for understanding of molecular mechanism of gene mutations related to heavy metal ions but also for wide variety of potential applications of metal-mediated base pairs in various fields, such as material, life and environmental sciences.  相似文献   

13.
Abstract

We report the synthesis of oligonucleotide conjugates engineered to allow discriminative hybridization at temperatures around physiological. Two types of structural modifications were introduced: 1) internal oligomethylene and oligoethylene glycol spacers, and 2) terminal phenazinium residues. The thermal denaturation behaviour of the complexes formed by these oligonucleotide conjugates with a target sequence is compared to that of natural duplexes. We observed a lowering of the Tm of the duplexes formed by the internal modified oligonucleotides, whilst the terminal phenazinium residues enhance their stability. The effect of the spacers is modulated by their length and hydrophobic or hydrophilic nature. Alkylating substituents, which modify the target DNA strand on hybridization, were introduced on all conjugates, and the target cleavage obtained after piperidine treatment used as a further indicator of hybridization.  相似文献   

14.
ABSTRACT

8-Chloroadenosine (8-Cl-Ado) has shown potential as a chemotherapeutic agent for the treatment of multiple myeloma and certain leukemias. 8-Cl-Ado treatment leads to a decrease in global RNA levels and incorporation of the analog into cellular RNA in malignant cells. To investigate the effects of 8-Cl-Ado modifications on RNA structure and function, an 8-Cl-Ado phosphoramidite and controlled-pore glass support were synthesized and used to introduce 8-Cl-Ado at internal and 3′- terminal positions, respectively. RNA oligonucleotides containing 8-chloroadenine (8-Cl-A) residues were synthesized and hybridized with complementary RNA strands. Circular dichroism spectroscopy of the resulting RNA duplexes revealed that the modified nucleobase does not perturb the overall A-form helix geometry. The thermal stabilities of 8-Cl-Ado modified duplexes were determined by UV thermal denaturation analysis and were compared with analogous natural duplexes containing standard and mismatched base pairs. The 8-Cl-Ado modification destabilizes RNA duplexes by ~5 kcal/mole, approximately as much as a U:U mismatched base pair. The duplex destabilization of 8-Cl-A may result from perturbation of Watson-Crick base pairing induced by conformational preferences of 8-halogenated nucleosides.  相似文献   

15.
Circular dichroism (CD) and UV-melting experiments were conducted with 16 oligodeoxynucleotides modified by the carcinogen 2-aminofluorene, whose sequence around the lesion was varied systematically [d(CTTCTNG[AF]NCCTC), N = G, A, C, T], to gain insight into the factors that determine the equilibrium between base-displaced stacked (S) and external B-type (B) duplex conformers. Differing stabilities among the duplexes can be attributed to different populations of S and B conformers. The AF modification always resulted in sequence-dependent thermal (Tm) and thermodynamic (−ΔG°) destabilization. The population of B-type conformers derived from eight selected duplexes (i.e. -AG*N- and -CG*N-) was inversely proportional to the −ΔG° and Tm values, which highlights the importance of carcinogen/base stacking in duplex stabilization even in the face of disrupted Watson–Crick base pairing in S-conformation. CD studies showed that the extent of the adduct-induced negative ellipticities in the 290–350 nm range is correlated linearly with −ΔG° and Tm, but inversely with the population of B-type conformations. Taken together, these results revealed a unique interplay between the extent of carcinogenic interaction with neighboring base pairs and the thermodynamic properties of the AF-modified duplexes. The sequence-dependent S/B heterogeneities have important implications in understanding how arylamine–DNA adducts are recognized in nucleotide excision repair.  相似文献   

16.
DNA duplexes containing an ethyl interstrand crosslink that bridges the N3 atoms of thymidines on the opposite strands have been synthesized using an approach that combines conventional solid phase oligonucleotide synthesis and the selective removal of protecting groups of a crosslinked thymidine dimer. This approach allows for the assembly of a crosslinked duplex directly on the solid support. Duplexes that contain a N3T-ethyl-N3T interstrand crosslink in a staggered orientation at either a -TA- or -AT- step in a duplex have been prepared. When placed in an -AT- step of a duplex the effect was stabilizing relative to the non-crosslinked control duplex (ΔTm=+24°C) and this crosslinked duplex was found to efficiently form multimers in the presence of T4 ligase. In the case of the -TA- crosslinked duplex the stabilizing effect was less pronounced (ΔTm=+6°C) and likewise did not undergo self ligation under identical conditions. Molecular modeling studies suggested that the -AT- containing lesion had little deviation in structure relative to the non-crosslinked duplex DNA control, whereas the -TA- crosslinked duplex exhibited significant buckling of the base pairs flanking the lesion.  相似文献   

17.
Tm values of 16 fully complementary RNA duplexes with repeating base sequence have been employed as the empirical basis for developing a reliable and practical method for computing apparent enthalpies (ΔH calc) for their helix → coil transitions. The approach taken is the same as in the accompanying investigation of DNA duplexes, although some of the computational variables of the “best-fit” function are necessarily different due to the distinguishing structural properties of the RNA-type helix. An excellent linear correlation was thus obtained between experimental Tm and ΔH calc values. An equally good fit was obtained between Tm and ΔH calc for five unrelated (to the 16 RNAs) decaribonucleotide duplexes. The differences in computational variables between the best-fit methods for RNA and DNA duplexes are shown to be a reflection of differences in cation binding and the effective local dielectric. The greater Tm dependence on G·C content of RNA helices than of DNA helices is shown to be due to a greater latitude of stacking stabilities of complementary dinucleotide fragments containing A·T than A·U base pairs.  相似文献   

18.
Abstract

We examined the effects of 1–(2-deoxy -2-fluoro-β-D-arabinofuranosyl)-thymine (or FMAU, a potent antiviral nucleoside) on the stability of duplex and triplexes. When compared the stability of the self-complementary 5′-A5T5 duplex with 5′-A5X5 (X = FMAU), duplex containing FMAU has much higher melting temperature (Tm). 5′-A6T5T3X3T5F3X3 and T3X3T5A6T5F3X3 form the parallel and antiparallel triplexes T3X3: A6:X3X3, respectively. The former exhibited the typical T:A:T triplex behavior with only one melting temperature at 70 °C and 45 °c in 1.0 M and 0.2 M NaCl solution, respectively, whereas the latter has two Tm values at 56 °C and 28 °C in 1.0 M solution. FMAU clearly stabilize the triplex structure as A6T22 which forms the parallel triplex T6:A6:T6 has also only one Tm at 54 °C and 37 °C in high and iow salt concentration solutions, respectively. A 31mer 5′-TCCTCCTTTTTTAGGAGGATTTTTTGGTGGT and 5′-TCCTCCTTTTTTAGGAGGATTTTTTX'X'TX'X'T (X' = 2′-deoxy-5-methylcytidine) were prepared to study their triplex forming potential. The former was found to have a week interaction of the Watson-Crick duplex with the mismatched third-strand at all pH. The latter formed a stable triplex at lower pH consistent with required protonation on the 5-methylcytosine base. For these studies we developed a simple PC desktop spreadsheet program to calculate the first derivative profile of the melting curve data.

This paper is dedicated to Prof. Jacques H. van Boom on the occasion of his 60th birthday.  相似文献   

19.
Electrospray mass spectrometry was evaluated regarding the reliability of the determination of the stoichiometries and equilibrium association constants from single spectra. Complexes between minor groove binders (Hoechst 33258, Hoechst 33342, DAPI, netropsin and berenil) and 12mer oligonucleotide duplexes with a central sequence (A/T)4 flanked by G/C base pairs were chosen as model systems. To validate the electrospray ionization mass spectrometry (ESI-MS) method, comparisons were made with circular dichroism and fluorescence spectroscopy measurements. ESI-MS allowed the detection of minor (2 drug + DNA) species for Hoechst 33258, Hoechst 33342, DAPI and berenil with duplex d(GGGG(A/T)4GGGG)· d(CCCC(A/T)4CCCC), which were undetectable with the other techniques. Assuming that the duplexes and the complexes have the same electrospray response factors, the equilbrium association constants of the 1:1 and 2:1 complexes were determined by ESI-MS, and the values show a good quantitative agreement with fluorescence determined constants for Hoechst 33258 and Hoechst 33342. It is also shown that ESI-MS can quickly give reliable information on the A/T sequence selectivity of a drug: the signal of a complex is directly related to the affinity of the drug for that particular duplex. The potential of ESI-MS as a qualitative and quantitative affinity screening method is emphasized.  相似文献   

20.
Abstract

The solution structure of an estrone (Es)-tethered tandem DNA duplex consisting of two Estethered tetranucleotides and a target octameric DNA sequence is reported. The structure of this Es-tethered tandem duplex has been compared with a corresponding natural tandem duplex without estrones. The Tm of the 3′-Es-tethered tetranucleotide part of the tandem duplex increases by 5°C, whereas the Tm of the 5′-Es-tethered tetranucleotide part increases by 7°C, compared with the corresponding natural counterpart. The NMR structures of both the Es-tethered tandem duplex and the natural counterpart have been based on 24 experimental NMR constraints per residue. Despite the fact that there is considerable distortion at the junction of two Es-tethered tetranucleotides in the major groove of the Es-tethered DNA duplex compared to the natural counterpart, both duplexes do take up B-type DNA structures. It is likely that the spatial proximity of two Es residues, and the resulting hydrophobic interaction between them might be responsible for the increase of the thermal stability of the Es-tethered tandem duplex in comparison with the natural counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号