首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chemokine receptor CXCR4 is one of the major coreceptors for human immunodeficiency virus type 1 (HIV-1) and considered as an important therapeutic target. Knockdown of CXCR4 by RNA interference has emerged as a promising strategy for combating HIV-1 infection. However, there is a potential drawback to this strategy as undesired side effects may occur due to the loss of natural function of CXCR4. In this study, we developed a novel approach using a single lentiviral vector to express simultaneously CXCR4 dual-shRNAs and an shRNA-resistant CXCR4 mutant possessing the most possible natural functions of CXCR4 and reduced HIV-1 coreceptor activity. Via this approach we achieved the replacement of endogenous CXCR4 by CXCR4 mutant P191A that could compensate the functional loss of endogenous CXCR4 and significant reduction of HIV-1 replication by 59.2 %. Besides, we demonstrated that construction of recombinant lentiviral vector using 2A peptide-based strategy has significant advantages over using additional promoter-based strategy, including increase of lentivirus titer and avoidance of promoter competition. Therefore, the novel approach to block HIV-1 coreceptor CXCR4 without impairing its normal function provides a new strategy for CXCR4-targeted therapeutics for HIV-1 infection and potential universal applications to knock down a cellular protein in non-toxic manner.  相似文献   

2.
Antisense oligonucleotides act as exogenous inhibitors of gene expression by binding to a complementary sequence on the target mRNA, preventing translation into protein. Antisense technology is being applied successfully as a research tool and as a molecular therapeutic. However, a quantitative understanding of binding energetics between short oligonucleotides and longer mRNA targets is lacking, and selecting a high-affinity antisense oligonucleotide sequence from the many possibilities complementary to a particular RNA is a critical step in designing an effective antisense inhibitor. Here, we report measurements of the thermodynamics and kinetics of hybridization for a number of oligodeoxynucleotides (ODNs) complementary to the rabbit β-globin (RBG) mRNA using a binding assay that facilitates rapid separation of bound from free species in solution. A wide range of equilibrium dissociation constants were observed, and association rate constants within the measurable range correlated strongly with binding affinity. In addition, a significant correlation was observed of measured binding affinities with binding affinity values predicted using a thermodynamic model involving DNA and RNA unfolding, ODN hybridization, and RNA restructuring to a final free energy minimum. In contrast to the behavior observed for hybridization of short strands, the association rate constant increased with temperature, suggesting that the kinetics of association are related to disrupting the native structure of the target RNA. The rate of cleavage of the RBG mRNA in the presence of ribonuclease H and ODNs of varying association kinetics displayed apparent first-order kinetics, with the rate constant exhibiting binding-limited behavior at low association rates and reaction-limited behavior at higher rates. Implications for the rational design of effective antisense reagents are discussed.  相似文献   

3.
Unlike resting CD4+ T cells, activated CD4+T cells are highly susceptible to infection of human immunodeficiency virus 1 (HIV-1). HIV-1 infects T cells and macrophages without activating the nucleic acid sensors and the anti-viral type I interferon response. Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA editing enzyme that displays antiviral activity against several RNA viruses. Mutations in ADAR1 cause the autoimmune disorder Aicardi-Goutieères syndrome (AGS). This disease is characterized by an inappropriate activation of the interferon-stimulated gene response. Here we show that HIV-1 replication, in ADAR1-deficient CD4+T lymphocytes from AGS patients, is blocked at the level of protein translation. Furthermore, viral protein synthesis block is accompanied by an activation of interferon-stimulated genes. RNA silencing of ADAR1 in Jurkat cells also inhibited HIV-1 protein synthesis. Our data support that HIV-1 requires ADAR1 for efficient replication in human CD4+T cells.  相似文献   

4.
5.
The role of plasmacytoid dendritic cells (pDC) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I) induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs) were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.  相似文献   

6.
The chemokine receptor CXCR4 is the principal coreceptor for X4 strains of HIV-1. We show that gp120 is unable to induce interactions between CXCR4 and G-protein in T-cells, but antagonized the agonist effect of SDF-1alpha, the natural ligand for CXCR4. Gp120 had ten times lower affinity for CXCR4 than CD4, implying that a substantial role for cellular CD4 may be to facilitate binding of the viral envelope to CXCR4. Binding of gp120 to CXCR4 was neither regulated by guanine nucleotides, nor affected by divalent cations, was temperature independent and bound to a homogenous population of CXCR4, which is characteristic for an antagonist to a G-protein coupled receptor. In contrast, SDF-1alpha binds to two affinity states of CXCR4 in T-cell membranes, which are modulated by guanine nucleotides. Binding of SDF-1alpha to CXCR4 was highly temperature dependent. Thus, the interaction of CXCR4 with HIV-1 viral envelope and chemokine exhibits fundamental differences.  相似文献   

7.
8.
9.
A restricted number of studies have shown that human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic CD4+ T cells are present in HIV-1-infected individuals. However, the roles of this type of CD4+ T cell in the immune responses against an HIV-1 infection remain unclear. In this study, we identified novel Nef epitope-specific HLA-DRB1*0803-restricted cytotoxic CD4+ T cells. The CD4+ T-cell clones specific for Nef187-203 showed strong gamma interferon production after having been stimulated with autologous B-lymphoblastoid cells infected with recombinant vaccinia virus expressing Nef or pulsed with heat-inactivated virus particles, indicating the presentation of the epitope antigen through both exogenous and endogenous major histocompatibility complex class II processing pathways. Nef187-203-specific CD4+ T-cell clones exhibited strong cytotoxic activity against both HIV-1-infected macrophages and CD4+ T cells from an HLA-DRB1*0803+ donor. In addition, these Nef-specific cytotoxic CD4+ T-cell clones exhibited strong ability to suppress HIV-1 replication in both macrophages and CD4+ T cells in vitro. Nef187-203-specific cytotoxic CD4+ T cells were detected in cultures of peptide-stimulated peripheral blood mononuclear cells (PBMCs) and in ex vivo PBMCs from 40% and 20% of DRB1*0803+ donors, respectively. These results suggest that HIV-1-specific CD4+ T cells may directly control HIV-1 infection in vivo by suppressing virus replication in HIV-1 natural host cells.Human immunodeficiency virus (HIV)-specific CD8+ cytotoxic T cells (CTLs) play a central role in the control of HIV type 1 (HIV-1) during acute and chronic phases of an HIV-1 infection (5, 29, 34). However, HIV-1 escapes from the immune surveillance of CD8+ CTLs by mechanisms such as mutations of immunodominant CTL epitopes and downregulation of major histocompatibility complex class I (MHC-I) molecules on the infected cells (9, 11, 12, 49). Therefore, most HIV-1-infected patients without highly active antiretroviral therapy (HAART) develop AIDS eventually.HIV-1-specific CD4+ T cells also play an important role in host immune responses against HIV-1 infections. An inverse association of CD4+ T-cell responses with viral load in chronically HIV-1-infected patients was documented in a series of earlier studies (8, 36, 39, 41, 48), although the causal relationship between them still remains unclear (23). Classically, CD4+ T cells help the expansion of CD8+ CTLs by producing growth factors such as interleukin-2 (IL-2) or by their CD40 ligand interaction with antigen-processing cells and CD8+ CTLs. In addition, CD4+ T cells provide activation of macrophages, which can professionally maintain CD8+ T-cell memory (17). On the other hand, the direct ability of virus-specific cytotoxic CD4+ T cells (CD4+ CTLs) to kill target cells has been widely observed in human virus infections such as those by human cytomegalovirus, Epstein-Barr virus (EBV), hepatitis B virus, Dengue virus, and HIV-1 (2, 4, 10, 19, 30, 31, 38, 50). Furthermore, one study showed that mouse CD4+ T cells specific for lymphocytic choriomeningitis virus have cytotoxic activity in vivo (25). These results, taken together, indicate that a subset of effector CD4+ T cells develops cytolytic activity in response to virus infections.HIV-1-specific CD4+ CTLs were found to be prevalent in HIV-1 infections, as Gag-specific cytotoxic CD4+ T cells were detected directly ex vivo among peripheral blood mononuclear cells (PBMCs) from an HIV-1-infected long-term nonprogressor (31). Other studies showed that up to 50% of the CD4+ T cells in some HIV-1-infected donors can exhibit a clear cytolytic potential, in contrast to the fact that healthy individuals display few of these cells (3, 4). These studies indicate the real existence of CD4+ CTLs in HIV-1 infections.The roles of CD4+ CTLs in the control of an HIV-1 infection have not been widely explored. It is known that Gag-specific CD4+ CTLs can suppress HIV-1 replication in a human T-cell leukemia virus type 1-immortalized CD4+ T-cell line (31). However, the functions of CD4+ T cells specific for other HIV-1 antigens remain unclear. On the other hand, the abilities of CD4+ CTLs to suppress HIV-1 replication in infected macrophages and CD4+ T cells may be different, as in the case of CD8+ CTLs for HIV-1-infected macrophages (17). In this study, we identified Nef-specific CD4+ T cells and investigated their ability to kill HIV-1 R5 virus-infected macrophages and HIV-1 X4 virus-infected CD4+ T cells and to suppress HIV-1 replication in the infected macrophages and CD4+ T cells. The results obtained in the present study show for the first time the ability of HIV-1-specific CD4+ CTLs to suppress HIV-1 replication in natural host cells, i.e., macrophages and CD4+ T cells.  相似文献   

10.
The CXC chemokine receptor CXCR4 is used as a major co-receptor for fusion and entry by syncytia-inducing T-tropic (X4) isolates of HIV-1. In the present study, we report the effects of an antisense oligodeoxyribonucleotide on the inhibition of CXCR4 gene expression in X4 HIV-1 infected HeLa-CD4 cells, to find more efficacious therapeutic possibilities for Human Immunodeficiency Virus type 1 (HIV-1) infection. Antisense phosphorothioate oligodeoxyribonucleotides (anti-S-ODNs) corresponding to the sequence of bases 69 to 88 of the human CXCR4 mRNA gene were synthesized. When the naked anti-S-ODN was incubated with HeLa-CD4 cells, the surface levels of this chemokine receptor were reduced up to 50%, indicating sequence-specific inhibition. We also examined the concomitant use of a basic peptide transfection reagent, nucleosomal histone proteins (RNP), for delivery of anti-S-ODNs. The anti-S-ODN encapsulated with RNP had higher inhibitory effects on p24 products than the naked anti-S-ODN.  相似文献   

11.
Abstract

The CXC chemokine receptor CXCR4 is used as a major co-receptor for fusion and entry by syncytia-inducing T-tropic (X4) isolates of HIV-1. In the present study, we report the effects of an antisense oligodeoxyribonucleotide on the inhibition of CXCR4 gene expression in X4 HIV-1 infected HeLa-CD4 cells, to find more efficacious therapeutic possibilities for Human Immunodeficiency Virus type 1 (HIV-1) infection. Antisense phosphorothioate oligodeoxyribonucleotides (anti-S-ODNs) corresponding to the sequence of bases 69 to 88 of the human CXCR4 mRNA gene were synthesized. When the naked anti-S-ODN was incubated with HeLa-CD4 cells, the surface levels of this chemokine receptor were reduced up to 50%, indicating sequence-specific inhibition. We also examined the concomitant use of a basic peptide transfection reagent, nucleosomal histone proteins (RNP), for delivery of anti-S-ODNs. The anti-S-ODN encapsulated with RNP had higher inhibitory effects on p24 products than the naked anti-S-ODN.  相似文献   

12.
为评价SV4 0载体 COS7稳定表达系统的可能应用价值 ,将含人组织型纤溶酶原激活剂 (t PA)编码区的SV4 0载体pctPA转染COS7细胞 ,并以G4 18选择培养 2 8d ,得到稳定的抗性细胞库 .Southern印迹和溶圈法分别分析该细胞库在随后的细胞传代中细胞内附加体拷贝数及t PA表达水平的变化 .在经选择培养 2 8d的COS7细胞库中 ,质粒pctPA以染色体外附加体的形式存在 (30 0拷贝 细胞 ) ,t PA的表达水平为 1 1μg d(10 6细胞 ) .在随后 3个月的动态观察中 ,随着细胞传代 ,该COS7细胞库tPA的表达水平虽逐渐递减 ,但在第 1个月内可保持在 1μg d(10 6细胞 )以上 .基于SV4 0载体 COS7稳定表达系统无需筛选克隆 ,在稳定的抗性细胞库形成后的 1个月内可能保持目的基因的高水平表达 ,因而较适合于需同时制备多种重组蛋白的实验 .  相似文献   

13.
Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor   总被引:10,自引:0,他引:10  
CXCR4, a member of the G protein-coupled receptor family of proteins, is the receptor for stromal cell-derived factor (SDF-1 alpha) and is a principal coreceptor for human immunodeficiency virus type 1 (HIV-1). CXCR4 has also been implicated in breast cancer metastasis. We examined the ability of CXCR4 to homomultimerize in detergent-solubilized cell lysates and in the membranes of intact cells. CXCR4 was found to multimerize in cell lysates containing the detergents CHAPSO or Cymal-7 but not other detergents that have been shown to disrupt the native conformation of CXCR4. CXCR4 expression levels did not affect the observed multimerization and differentially tagged CXCR4 molecules associated only when coexpressed in the same cell. CXCR4 did not interact with CCR5, the other principal HIV-1 coreceptor, when the two proteins were coexpressed. Using bioluminescence resonance energy transfer (BRET(2)), we demonstrated that CXCR4 multimers are found naturally in the intact cell membrane, in both the presence and absence of multiple CXCR4 ligands. Ligand binding did not significantly alter the observed BRET(2) signal, suggesting that CXCR4 exists as a constitutive oligomer. In cell lysates prepared with non-denaturing detergents, CXCR4 sedimented in a manner consistent with a dimer, whereas CCR5 sedimented as a monomer under these conditions. The stable, constitutive dimerization of CXCR4 may contribute to its biological functions in chemokine binding, signaling, and HIV-1 entry.  相似文献   

14.
To test the anti-human immunodeficiency virus type-1 (HIV-1) activity of 3,6,9,12-tetraazatetradecane-1,14-diylbis(zinc dithiocarbamate)-S,S'-dioxide (cyclic zinc-dithiocarbamate-S, S'-dioxide), MAGI and MAGIC-5 cells were used; the former express CXCR4 and the latter express both CXCR4 and CCR5, which are HIV-1 coreceptors. The compound markedly inhibited HIV-1 X4 (CXCR4-using) viral replication in both MAGI and MAGIC-5 cells. On the other hand, the replication of HIV-1 R5X4 (both CXCR4-and CCR5-using) in MAGI cells but not MAGIC-5 cells was inhibited by the compound. The compound was found to specifically inhibit HIV-1 (X4) envelope-mediated cell-to-cell fusion, binding of anti-CXCR4 monoclonal antibody (12G5) to CXCR4 expressed on the surface of cells, and calcium flux induced by stromal-derived factor-1alpha (SDF-1alpha) bound to CXCR4. The results suggest that the compound inhibited CXCR4-mediated HIV-1 infection by influencing to the HIV-1 coreceptor activity of CXCR4.  相似文献   

15.
Tuberculosis (TB) is the leading cause of mortality among those infected with human immunodeficiency virus (HIV-1) worldwide. HIV-1 load and heterogeneity are increased both locally and systemically in active TB. Mycobacterium tuberculosis (MTB) infection supports HIV-1 replication through dysregulation of host cytokines, chemokines, and their receptors. However the possibility that mycobacterial molecules released from MTB infected macrophages directly interact with CD4+ T cells triggering HIV-1 replication has not been fully explored. We studied the direct effect of different MTB molecules on HIV-1 replication (R5-tropic strain Bal) in anti-CD3- stimulated CD4+ T cells from healthy donors in an antigen presenting cell (APC)-free system. PIM6, a major glycolipid of the mycobacterial cell wall, induced significant increases in the percent of HIV-1 infected T cells and the viral production in culture supernatants. In spite of structural relatedness, none of the other three major MTB cell wall glycolipids had significant impact on HIV-1 replication in T cells. Increased levels of IFN-γ in culture supernatants from cells treated with PIM6 indicate that HIV-1 replication is likely dependent on enhanced T cell activation. In HEK293 cells transfected with TLR2, PIM6 was the strongest TLR2 agonist among the cell wall associated glycolipids tested. PIM6 increased the percentage of HIV infected cells and viral particles in the supernatant in a T-cell-based reporter cell line (JLTRg-R5) transfected with TLR1 and TLR2 but not in the cells transfected with the empty vector (which lack TLR2 expression) confirming that PIM6-induced HIV-1 replication depends at least partially on TLR2 signaling.  相似文献   

16.
17.
The HIV-1 envelope glycoprotein gp120 interacts consecutively with CD4 and CCR5 to mediate the entry of R5-HIV-1 strains into target cells. The N-terminus of CCR5, which contains several sulfated tyrosines, plays a critical role in gp120-CCR5 binding and, consequently, in viral entry. Here, we demonstrate that a tyrosine sulfated peptide, reproducing the entire N-terminal extracellular region of CCR5, its unsulfated analogue, and a point-mutated peptide are unable to inhibit R5-HIV-1 mediated infection, competing with the entire CCR5 in the formation of gp120-CD4-CCR5 complex. Surprisingly, these peptides show the capability of enhancing HIV-1 infection caused by X4 strains through the up-regulation of both CD4 and CXCR4 receptors.  相似文献   

18.
穿心莲内酯具有明显的抗病毒作用,对HIV-1(Human immunodeficiency virus type 1)具有明显的抑制作用,本研究探讨了穿心莲内酯影响CXCR4启动子活性的作用机制。首先构建双荧光素酶报告基因载体pFireRlucCXCR4(C-X-C chemokine receptor 4),并转染入人HEK293T细胞;利用CCK8法检测穿心莲内酯对人HEK293T细胞细胞毒性作用;双荧光素酶报告基因技术检测穿心莲内酯对CXCR4启动子活性的影响;MTT法检测穿心莲内酯对人T淋巴细胞Jurkat细胞活性影响;实时荧光定量PCR检测穿心莲内酯对人T淋巴细胞Jurkat细胞表面CXCR4 mRNA和蛋白表达的影响。PCR分别扩增了CXCR4启动子(777 bp)和Rluc(1 997 bp)表达单元,通过测序和酶切鉴定双荧光素酶报告基因载体插入正确;穿心莲内酯作用于转染pFireRluc-CXCR4HEK293T细胞,双荧光素酶结果显示:穿心莲内酯能够下调CXCR4启动子活性,差异具有显著性(P<0.05)。穿心莲内酯作用于人T淋巴细胞Jurkat细胞后,qPCR...  相似文献   

19.
HIV-1 enters cells through interacting with cell surface molecules such as CD4 and chemokine receptors. We generated recombinant soluble gp120s derived from T-cell line-tropic (T-tropic) and macrophage-tropic (M-tropic) HIV-1 strains using a baculovirus expression system and investigated the association of CD4-gp120 complex with the chemokine receptor and/or other surface molecule(s). For monitoring the co-down-modulations of the CD4-gp120 complex, a cytoplasmic domain deletion mutant (tailless CD4), which is not capable of undergoing down-modulation by itself in response to phorbol ester PMA, was used. Our studies revealed both cell-type and HIV-1 strain-specific differences. We found that T-tropic gp120s were capable of priming co-down-modulation with tailless CD4 by interacting with CXCR4, whereas M-tropic SF162 gp120 could not after PMA treatment even in the presence of CCR5. Among the T-tropic HIV-1 envelopes, IIIB gp120 was the most potent. Furthermore, the ability of gp120 to prime the PMA induced co-down-modulation of tailless CD4 appeared to be dependent on the concentration of the principal coreceptor CXCR4. Nevertheless, the observation that IIIB gp120 strongly primed tailless CD4 co-down-modulation on human osteosarcoma HOS cells that express undetectable levels of surface CXCR4 raised the possibility that membrane component(s) other than those recently identified can be involved in down-modulation of the CD4/gp120 complexes.  相似文献   

20.
Chaitidis P  Kuhn H 《FEBS letters》2005,579(17):3691-3694
The lipoxygenase pathway of immunocompetent cells has been related to HIV infection and interleukins-4 and -13 have been described as major regulators of this metabolic route. To explore whether 15-lipoxygenase1 expression might impact the responsiveness of monocytic cells for HIV we induced expression of this enzyme by two independent ways (stable transfection of U937 cells and culturing of blood monocytes in vitro in the presence of granulocyte/monocyte colony stimulating factor and interleukin 4) and assayed the cellular content of the two HIV-1 receptors CD4 and CXCR4 (CD184) by real time RT-PCR and fluorescence-activated cell sorting. Wild-type U937 cells express CD4 and CXCR4 at high levels and expression was not altered when the cells were transfected with control plasmids. In contrast, expression of these proteins was strongly reduced when the cells were stably transfected with 15-lipoxygenase1. Similar effects were observed when blood monocytes were cultured in the presence of granulocyte/monocyte colony stimulating factor and interleukin-4. Under these conditions strong overexpression of 15-lipoxygenase1 was paralleled by downregulation of CD4 and CXCR4. Since these surface proteins are essential for the binding of T-tropic HIV-1 strains expression of 15-lipoxygenase1 may confer resistance against HIV infection to monocytic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号