首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

2′,3′-Dideoxy-8-aza-1-deazaadenosine (21) and its α-anomer (20) were synthesized via glycosylation of 7-chloro-3H-1,2,3-triazolo[4,5-b]pyridi-ne with 2,3-dideoxy-5-O-[(1, 1)-dimethylethyl)diphenylsilyl]-D-glycero-o-pen-tofuranosyl chloride. The reaction gave a mixture of α- and β-anomers of N3-, N4- and N1-glycosylated regioisorners (12–15). The α- and β-anomers of the N4-glycosylated isomer 26 and 27 were also synthesized through the glycosylation of 8-aza-1-deazaadenine with 1-acetoxy-2,3-dideoxy-5-O-f(1,1-di-methylethyl)dimethylsilyl]-D-glycero-pentouranose. These dideoxynucleo-sides and a series of previously synthesized 8-aza-1-deazapurine nucleosidcs were tested for activity against several DNA and RNA viruses, HIV-1 included. The α- and β-anomers of 7-chloro-3-(2-deoxy-D-erythro-pentofuranosyl)-3H-1,2,3-triazolo[4,5-b]pyridine (3a and 4) showed activities against Sb-1 and Coxs viruses. The α- and β-anomers of 2′,3′-dideoxy-8-aza-1-deazaadenosine (20 and 21) were found active as inhibitors of adenosine deaminase.  相似文献   

2.
Five new derivatives of adenosine, N6-[(1-methylethyl)thiomethyl]-(1), N6-methyithiomethyl-(2), N6-phenylthiomethyl-(3), N6-[(3-amino-3-carboxypropyl)thiomethyl]-(4), and N6-[(2-amino-2-carboxyethyl)thiomethyl]adenosine (5), were synthesized and their cytokinin activity was tested in the Amaranthus betacyanin assay and the soybean callus growth.

1, 2, and 3 were active in the former assay and all five compounds were active in the latter assay. The activities of the compounds were, however, weaker than those of the reference derivatives, in which Sulfides were replaced by methylenes, N6-isopentyl-, N6-n-propyl-, N6-benzyl-, and N6-(5-amino-5-carboxypentyl)adenosine. This fact indicates that the sulfide structure introduced into the N6-side chains had the effect of reducing cytokinin activity.  相似文献   

3.
Abstract

2′-5′ and 3′-5′ linked 2-aminoadenylyl-2-aminoadenosines [(2′-5′)n2Apn2A (1) and (3′-5′)n2Apn2A (2)] were synthesized by condensation of 5′-O-monomethoxytrityl-N 2 N 6-dibenzoyl-2-aminoadenosine and N 2,N 6,2′,3′-O-tetrabenzoyl-2-aminoadenosine 5′-phosphate using dicyclohexylcarbodiimide (DCC). The conformational properties of these dimers 1 and 2 were examined by UV, NMR and CD spectroscopy. The results reveal that the 2′-5′-isomer 1 takes a stacked conformation, which contains a larger base-base overlap and is more stable against thermal perturbation with respect to the 3′-5′-isomer 2. Interactions of 1 and 2 with polyuridylic acid (Poly (U)) were also examined by Tm, mixing curves, UV and CD spectra. Both the dinucleoside isomers 1 and 2 formed a complex of 1 : 2 stoichiometry with poly(U), which was much more stable than that of the corresponding ApA isomer  相似文献   

4.
Abstract

Various adenosine analogues were tested at the adenosine A2B receptor. Agonist potencies were determined by measuring the cyclic AMP production in Chinese Hamster Ovary cells expressing human A2B receptors. 5′-.N-Substituted carboxamidoadenosines were most potent. 5′-N-Ethylcarboxamidoadenosine (NECA) was most active with an ECso value of 3.1 μM. Other ribose modified derivatives displayed low to negligible activity. Potency was reduced by substitution on the exocyclic amino function (N6) of the purine ring system. The most active N6-substituted derivative N6-methyl-NECA was 5 fold less potent than NECA. C8-and most C2-substituted analogues were virtually inactive. 1-Deaza-analogues had a reduced potency, 3-and 7-deazaanalogues were not active.  相似文献   

5.
Abstract

Reaction of 2′,3′,5′-O-silylated inosine derivative 1 with 2, 3-O-isopropylidene-5-O-tritylribosyl chloride (3) in a two-phase (CH2Cl2-aq. NaOH) system in the presence of Bu4NBr gave three products, i. e., 6-O-α-, 6-O-β-, and N 1-β-isomers of glycosides 4, 5a, and 5b. A similar PTC reaction of 1 with 2, 3, 5-tri-O-benzylribosyl bromide (9) gave four regio- and stereo-isomers involving the N1-β-glycoside 10. Reaction of 1 with 2, 3, 5-tri-O-benzoylribosyl bromide (11) afforded three products involving the desired N1-β-glycoside 12b, which could be deprotected to give N 1-ribosylinosine (15b) as a useful intermediate for the synthesis of cIDPR.

  相似文献   

6.
Abstract

We report an improved synthesis of N 6-(6-aminohexyl)FAD (1) using an efficient one-pot conversion of inosine to the N-trifluoroacetyl protected N 6-(6-aminohexyl)adenosine 3. The 5′-O-phosphorylated AMP derivative 4, activated as the imidazolide, was coupled with commercial sodium riboflavin phosphate by using 18-crown-6 in DMF.  相似文献   

7.
Abstract

9-Cyclobutyladenines bearing both methylene and hydroxymethyl groups, 3 and 4, were prepared by dehydration of carbocyclic oxetanocin A (1a). Introduction of a double bond into cyclobutane ring was achieved by allylic oxidation of N 6-benzoyl-9-[3-methylenecyclobutyl]adenine (12), which after several steps, afforded 9-[3-(hydroxy-methyl)-2-cyclobutenyl)adenine (5).  相似文献   

8.
Abstract

A procedure was developed for the chemical synthesis of P1,P2-dinucleoside-5′-diphosphates (N1(5′)pp(5′)N2) on a nanomolar scale Reaction conditions for activating purine-5′-monophosphates (pA, pG, and pm7G) by 1,1′-carbonyldiimidazole were studied and optimized in respect to solvents and amount of activating reagent used. Various dinucleoside-5′-diphosphates were synthesized in 62-98% yield by incubating activated and non-activated purine-5′-monophosphates. Two unexpected by-products were formed by competition reactions: the imidazolidate of the non-activated nucleotide and the corresponding symmetrically substituted dinucleoside-5′-diphosphate. A mechanism is proposed to explain the observed side reactions.  相似文献   

9.
Abstract

2′-Deoxy-5′-0-(4,4′-dimethoxytrityl)-5-methyl-N 4-(1-pyrenylmethyl)-α-cytidine (5) was prepared by reaction of 1-pyrenylmethylamine with an appropriate protected 4-(l,2,4-triazolyl)-α-thymidine derivative 3 which was synthesized from 5-O-DMT protected α-thymidine 1. Aminolysis of 3 afforded 3′-O-acetyl-2′-deoxy-5′-O-(4,4′-dimethoxytrityl)-5-methyl-α-cytidine (8). Benzoylation of 8 and removal of acetyl afforded N 4-benzoyl-2-deoxy-5–0-(4,4′-dimethoxytrityl)-5-methyl-α-cytidine (10). The amidites of compounds 5and 10 were prepared and used in α-oligonucleotide synthesis. DNA three-way junction (TWJ) is stabilized when an α-ODN is used for targeting the dangling flanks of the stem in a DNA hairpin. Further stabilization of the TWJ is observed when 5 is inserted into the α-ODN at the junction region.

  相似文献   

10.
Abstract

N-(1-alkenyl) derivatives of 2,4-pyrimidinediones (6–9) were prepared in a one pot synthesis from aldehydes and the nucleobases using trimethylsilyl trifluoromethanesulfonate (TfOTMS) as coupling reagent. Presilylation of the above nucleobases, and N 6-benzoyladenine, with excess N,O-bis(trimethylsilyl)acetamide (BSA) followed by addition of one mol eq. TfOTMS yielded the N-(1-trimethylsilyloxyalkyl) derivatives 1–5.  相似文献   

11.
Plant growth regulator (PGR) application decreased uptake of 10–6 M14C-labeled metribuzin (4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one) into leaf interveinal areas of 21-day-old soybean seedlings. BAS 140 810, (N-allyl-N-2-(2,4,6-trichlorophenoxy)ethyl-piperidinium-bromide), as a seed treatment or 10–6 M triapenthenol or RSW 0411 (B-(cyclohexalmethylene)-gamma-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol) in nutrient solution slowed interveinal unloading of metribuzin and altered metabolite pools. Stems and roots of PGR-treated plants exhibited significantly greater water-soluble metabolite pools than untreated controls. TLC metabolite identification indicated an increase in metribuzin conjugates. This may contribute to the mode of action involved in the apparent safening mechanism. Furthermore, floating leaf disk studies with metribuzin showed plant growth regulation figured prominently in safening against the cessation of oxygen evolution.  相似文献   

12.
Abstract

The title compound was synthesized by a transamination reaction between N4 -benzoyl-2′-deoxy-5′-O-(4,4′-dimethoxytrityl)cytidine and hexane-1,6-diamine in the presence of 1,5,7-triazabicyclo(4.4.0)dec-5-ene (TBD).  相似文献   

13.
Synthesis of 3-[4-(N-substituted sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyri-do[3′,2′:4,5]selenolo[3,2-d]pyrimidines,7-[4-(N-substituted sulfamoyl)phenyl]-7,8-dihydro-8-oxo-3,4-diphenylpyrimido[4′,5′:4,5]selenolo [2,3-c]pyridazines and 1-[4-(N-substituted sulfamoyl)phenyl]-1,11-dihydro 11-oxo-4-methylpyrimido[4′,5′:4,5]selenolo[2,3-b]quinolines is reported. 4-Amino-N-pyrimidine-2-ylbenzene sulfonamide (a), 4-amino-N-(2,6-dimethylpyrimidin-4-yl)benzene sulfonamide (b), N-[(4-aminophenyl)sulfonyl] acetamide (c) with N-ethoxymethyleneamino of selenolo pyridine, selenolo pyridazine and selenolo quinoline derivatives respectively were obtained starting from 1-amino-N 4-substituted sulfanilamides. Spectroscopic data (IR, 1H NMR, 13C NMR and Mass spectral) confirmed the structure of the newly synthesized compounds. Substituted pyrimidines, pyridazines and quinolines were screened for antibacterial activity against gram-positive and gram-negative bacteria. Selenolo derivative of N-[(4-aminophenyl)sulfonyl] acetamide (substitutent of sulfacetamide c) showed strong bactericidal effect against all the tested organisms. Selenolo[3,2-d]pyrimidin (substitutent a) showed a good bactericidal effect against Serratia marcescens, Staphylococcus aureus and Escherichia coli. Compounds selenolo[2,3-c]pyridazine (substitutent b), selenolo[2,3-b]quinoline(substitutents c)) exhibited a moderate bactericidal effect against Serratia marcescens. None of the synthesized seleno pyridazines has a considerable antimicrobial activity against the tested organisms. The minimum inhibitory concentration (MIC) of the most active compound-3-[4-(N-acetyl sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyrido[3′,2′:4,5]selenolo [3,2-d]pyrimidine was 10 mg ml−1.  相似文献   

14.
A series of new N′-[N-(2,3,4-tri-O-acetyl-β-d-xylopyranosyl)thiocarbamoyl]-2-[(1-aryl-1H-tetrazol-5-yl)sulfanyl]acetohydrazides 5a5e were synthesized rapidly in high yields from 2-(1-aryl-1H-tetrazol-5-ylsulfanyl)acetohydrazides 3a3e and 2,3,4-tri-O-acetyl-β-d-xylopyranosyl isothiocyanate 4, then 5a5e were converted to a series of new 5-(1-aryl-1H-tetrazol-5-ylsulfanylmethyl)-N-(2,3,4-tri-O-acetyl-β-d-xylopyranosyl)-1,3,4-oxadiazole-2-amines 6a6e and 5-(1-aryl-1H-tetrazol-5-ylsulfanylmethyl)-N-(2,3,4-tri-O-acetyl-β-d-xylopyranosyl)-1,3,4-thiadiazole-2-amines 7a7e, respectively under mercuric acetate/alcohol system or acetic anhydride/phosphoric acid system, then deacetylated in the solution of CH3ONa/CH3OH. All of the novel compounds were characterized by IR, 1H NMR, 13C NMR, MS and elemental analysis. The structures of compounds 2e, 3e, 5a and 5c have been determined by X-ray diffraction analysis. Some of the synthesized compounds displayed PTP1B inhibition and microorganism inhibition.  相似文献   

15.
The nucleophilic addition–elimination reaction of 2′,3′,5′-tri-O-acetyl-2-fluoro-O 6-[2-(4-nitrophenyl)ethyl]inosine (8) with [15N]benzylamine in the presence of triethylamine afforded the N 2-benzyl[2-15N]guanosine derivative (13) in a high yield, which was further converted into the N 2-benzoyl[2-15N] guanosine derivative by treatment with ruthenium trichloride and tetrabutyl-ammonium periodate. A similar sequence of reactions of 2′,3′,5′-tri-O-acetyl-2-fluoro-O 6-[2-(methylthio)ethyl]inosine (9) and the 6-chloro-2-fluoro-9-(β-D-ribofuranosyl)-9H-purine derivative (11), which were respectively prepared from guanosine, with potassium [15N]phthalimide afforded the N 2-phthaloyl [2-15N]guanosine derivative (15; 62%) and 9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-6-chloro-2-[15N]phthalimido-9H-purine (17; 64%), respectively. Compounds 15 and 17 were then efficiently converted into 2′,3′,5′-tri-O-acetyl[2-15N]guanosine. The corresponding 2′-deoxy derivatives (16 and 18) were also synthesized through similar procedures.  相似文献   

16.
Abstract

The syntheses of all three of the mono-N-methy1 derivatives of C-ribavirin (3-β-D-ribofuranosyl-1, 2, 4-triazole-5-carboxamide, 2) have been accomplished. Reaction of 1-(β-D-ribofuranosyliminomethyl)-2-methyl-hydrazine ( 7 ) with ethyl oxamate (8) in boiling ethanol gave the N′-methyl-C-ribavirin ( 3 ). A similar treatment of β-D-ribofuranosyl-1-carboximidic acid methyl ester ( 6 ) with N′-methyloxamic hydrazide ( 10 ) furnished the N2-methyl-C-ribavirin ( 4 ). Direct methylation of unprotected 2 with methyl iodide in the presence of potassium carbonate in dimethyl sulfoxide gave N 4-methyl isomer ( 5 ) as the major product. Structural assignments of 3 , 4 , and 5 were based on the unequivocal synthetic sequences, 1H and 13C NMR data and confirmed by single crystal X-ray diffraction analysis.  相似文献   

17.
Abstract

An efficient four step process for the preparation of 5′-O-(4,4′-dimethoxytrityl)-N 2-isobutyryl-2′-O-(2-methoxyethyl)-guanosine 1 was developed. Direct 2′-O-alkylation of 2,6-diaminopurine riboside 2 was accomplished via inexpensive and commercially available reagents such as KOH, DMSO and alkyl halides at room temperature in 4–6 hrs. Pure 2′-O-(2-methoxyethyl)-DAPR 3 was isolated by crystallization from methanol. Enzymatic deamination of 3 followed by selective N 2-isobutyrylation and 5′-O-dimethoxytritylation furnished desired 1 in high yield and purity. Fully optimized four step synthetic process has been scaled up to the pilot plant level.  相似文献   

18.
On the basis of potent and selective binding affinity of Cl-IB-MECA to the human A3 adenosine receptor, its 4′-thioadenosine derivatives were efficiently synthesized starting from D-gulonic γ -lactone. Among compounds tested, 2-chloro-N 6-(3-iodobenzyl)- and 2-chloro-N 6-methyl-4′ -thioadenosine-5′ -methyluronamides (7a and 7b) exhibited nanomolar range of binding affinity (K i = 0.38 nM and 0.28 nM, respectively) at the human A3AR. These compounds showed anti-growth effects on HL-60 leukemia cell, which resulted from the inhibition of Wnt signaling pathway.  相似文献   

19.
Abstract

The synthesis and biological activity of 5-fluorocytallene (3a) is described. 5-Fluorocytosine (4) was alkylated with 1-benzoyloxy-4-bromo-2-butyne (5) to give N1-(4-benzoyloxy-2-butyn-1-yl)-5-fluorocytosine (6). Debenzoylation led to N1-(4-hydroxy-2-butyn-1-yl)-5-fluorocytosine (7a). The latter compound was transformed to the N4-dimethylaminomethylene derivative 8 which was isomerized in situ to the corresponding allene 9. Deprotection afforded 5-fluorocytallene (3a). Compound 3a suppressed the infectivity and replication of both laboratory and primary HIV-1 strains in vitro at nontoxic concentrations.  相似文献   

20.
Abstract

The synthesis of cyclic ADP-carbocyclic-ribose (2), as a stable mimic for cyclic ADP-ribose, was investigated. Construction of the 18-membered backbone structure was successfully achieved by condensation of the two phosphate groups of 19, possibly due to restriction of the conformation of the substrate in a syn-form using an 8-chloro substituent at the adenine moiety. SN2 reactions between an optically active carbocyclic unit 8, which was constructed by a previously developed method, and 8-bromo-N 6-trichloroacetyl-2′,3′-O-isopropylideneadenosine 9c gave N-1-carbocyclic derivative, which was deprotected to give 5′,5′-diol derivatives 18. When 18 was treated with POCl3 in PO(OEt)3, the bromo group at the 8-position was replaced to give N-1-carbocyclic-8-chloroadenosine 5′,5′-diphosphate derivative 19 in 43% yield. Treatment of 19 with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride gave the desired intramolecular condensation product 20 in 10% yield. This is the first chemical construction of the 18-membered backbone structure containing an intramolecular pyrophosphate linkage of a cADPR-related compound with an adenine base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号