首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles and their precise dose localization. Biologically, carbon, neon, and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing the biological effectiveness relative to low linear energy transfer x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle-related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high doses to tumors while minimizing irradiation of normal tissues. Clinical use requires a close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists, and radiation biologists.  相似文献   

2.
Effect of microgravity on recovery of bacterial cells from radiation damage was examined on the IML-2 mission in 1994 using extremely radioresistant bacterium Deinococcus radiodurans. The cells were lyophilized and exposed to 60Co gamma-rays with doses 2 to 12 kGy before the space flight. At the end of the mission, the cells were mixed on board with liquid nutrient medium to allow the cells to start recovery process from the radiation damage. Afterwards the cells were stored at 4 degrees C until landing. The influence of cosmic radiation was negligible, because total absorbed dose of space radiation measured during the mission was less than 2 mGy and this bacterium does not decrease its viability after both gamma-rays and high-LET heavy charged particles irradiation with doses up to 5 kGy. The survival of the cells incubated in space increased significantly compared with the ground controls, suggesting that the recovery of this bacterium from radiation damage was enhanced under microgravity.  相似文献   

3.
Experimental observations are reported which follow the bioluminescence intensity of luciferase during irradiation by a 5 MeV proton beam. Bioluminescence is a measure of the protein enzyme activity and provides an assay of the enzyme rate of reaction in real time. Transient responses after a pulse of protons show recovery of the reaction rate with two time constants of 0.3 s(-1) and 0.01 s(-1). Changes in the reaction rate are due to radiation damage to the active form of the protein luciferase. Quantitative analysis of the radiation damage and recovery of the protein shows that products of the radiolysis of water play major part in the process of enzyme damage at room temperature. A few minutes after the pulse of protons, most of the enzyme activity has recovered. We attribute the fast recovery to the removal of charged ions, while the slow recovery involves refolding of denatured protein.  相似文献   

4.
The effect of accelerated argon ions on the retina   总被引:1,自引:0,他引:1  
It has been postulated that high energy heavy ions cause a unique form of damage in living tissue, which results from the high linear energy transfer of accelerated single particles. We have searched for these single-particle effects, so-called "microlesions," in composite electron micrographs of retinas of rats which had been irradiated with a dose of 1 Gy of 570 MeV/amu argon ions. The calculated rate of energy deposition of the radiation in the retina was about 100 keV/micron and the influence was four particles per 100 micron 2. Different areas of the irradiated retinas which combined would have been expected to be traversed by approximately 2400 particles were examined. We were unable to detect ultrastructural changes in the irradiated retinas distinct from those of controls. The spatial cellular densities of pigment epithelial and photoreceptor cells remained within the normal range when examined at 24 h and at 6 months after irradiation. These findings suggest that the retina is relatively resistant to heavy-ion irradiation and that under the experimental conditions the passage of high energy argon ions does not cause retinal microlesions that can be detected by ultrastructural analysis.  相似文献   

5.
Planning of the deep-space exploration missions raises a number of questions on the radiation protection of astronauts. One of the medical concerns is associated with exposure of a crew to highly energetic particles of galactic cosmic rays. Among many other health disorders, irradiation with these particles has a substantial impact on the central nervous system (CNS). Although radiation damage to CNS has been addressed extensively during the last years, the mechanisms underlying observed impairments remain mostly unknown. The present study reveals neurochemical and behavioural alterations induced in rats by 1 Gy of 500 MeV/u 12C particles with a relatively moderate linear energy transfer (10.6 keV/μm). It is found that exposure to carbon ions leads to significant modification of the normal monoamine metabolism dynamics as well as the locomotor, exploratory, and anxiety-like behaviours during a two-month period. The obtained results indicate an abnormal redistribution of monoamines and their metabolites in different brain regions after exposure. The most pronounced impairments are detected in the prefrontal cortex, nucleus accumbens, and hypothalamus that illustrate the sensitivity of these brain regions to densely ionizing radiations. It is also shown that exposure to 12C particles enhances the anxiety in animals and accelerates the age-related reduction in their exploratory capability. The observed monoamine metabolism pattern may indicate the presence of certain compensatory mechanisms being induced in response to irradiation and capable of partial restoration of monoaminergic systems’ functions. Overall, these findings support a possibility of CNS damage by space-born particles of a relatively moderate linear energy transfer.  相似文献   

6.
This study is devoted to the analysis of DNase activity and DNA fragmentation level in liver cells nuclei of rats with transplanted Guerin's carcinoma on irradiation background. Was shown, that in an organism of previously irradiated rat with tumor the dominance of neoplasm development over the consequences of the irradiation is observed on the initial stages of the experiment. The alignment of gamma-irradiation influencing already takes place from the first stages after Guerin's carcinoma transplantation, which is testified by the decrease of DNase activity of liver cells nuclei and the decrease of a degree of nuclear DNA fragmentation. On the stationary stages of tumor growth the general action of the factors causes differences in the parameters of the investigated animal groups. It shows that together with the constant reduced level of DNase activity the processes of DNA fragmentation strengthen and their intensity reaches maximum during this period. The nature of the fragmented DNA accumulation is similar to the irradiated organism on the first days after the radiation factor removal. Thus, the radiation-induced signal in the organism with tumor is leveled under the conditions of active neoplasm growth; nevertheless, the consequents of its operating do not disappear, and only move away in time.  相似文献   

7.
Survival of colony-forming units-spleen (CFU-S) was measured after single doses of photons or heavy charged particles from the BEVALAC. The purposes were to define the radiosensitivity to heavy ions used medically and to evaluate relationships between relative biological effectiveness (RBE) and dose-averaged linear energy transfer (LET infinity). In in vitro irradiation experiments. CFU-S suspensions were exposed to 220 kVp X rays or to 20Ne (372 MeV/micron) or 40Ar (447 MeV/micron) particles in the plateau portion of the Bragg curve. In in vivo irradiation experiments, donor mice from which CFU-S were harvested were exposed to 12C (400 MeV/micron). 20Ne (400 or 670 MeV/micron), or 40Ar (570 MeV/micron) particles in Bragg peaks spread to 4 or 10 cm by spiral ridge filters. Based on RBE at 10 survival, the maximum RBE of 2.1 was observed for 40Ar particles characterized by an LET infinity of approximately 100 keV/micron. Lower RBEs were determined at lower or higher estimated values of LET infinity and ranged from 1.1 for low energy 40Ar particles to 1.5-1.6 for low energy 12C and 20Ne. The responses of CFU-S are compared with responses of other model systems to heavy charged particles and with the reported sensitivity of CFU-S to neutrons of various energies. The maximum RBE reported here, 2.1 for high energy 40Ar particles, is somewhat lower than values reported for fission-spectrum neutrons, and is appreciably lower than values for monoenergetic 0.43-1.8 MeV neutrons. Low energy 12C and 20Ne particles have RBEs in the range of values reported for 14.7 MeV neutrons.  相似文献   

8.
The lethal response of a diploid yeast strain BZ34 to densely ionizing radiations from the reaction 10B(n, alpha)7 Li was studied. The values for relative biological effectiveness (r.b.e.) and oxygen enhancement ratio (o.e.r.) for this radiation compare favourably with the data obtained with charged particles on the same strain of yeast. Recovery from potentially lethal damage was also studied by post-irradiation holding under non-nutrient conditions. In order to understand the role of oxygen in the recovery process, the investigation covered the following treatment regimens: (a) aerobic irradiation and aerobic holding (A-A), (b) aerobic irradiation and hypoxic holding (A-H), (c) hypoxic irradiation and hypoxic holding (H-H) and (d) hypoxic irradiation and aerobic holding (H-A). It has been found that the presence of oxygen is essential for recovery from the damage induced by both gamma rays and high linear energy transfer (LET) radiations. The extent of recovery was larger for gamma-induced damage than for damage induced by high LET radiation (alpha + 7Li) for the A-A condition. In the H-H condition, while only a slight recovery was seen for gamma-induced damage, it was totally absent for high LET damage. For the modality A-H, it was found that there is not recovery from the sparsely ionising gamma radiation-induced damage. The implications of these results for the treatment of malignant tumours by radiotherapy are briefly discussed.  相似文献   

9.
Heavy ion radiation (high linear energy transfer, LET, radiation) induces various types of chromosome aberration. In this report, we describe a new method employing an atomic force microscope (AFM) for nanometer-level structural analysis of chromosome damage induced by heavy ion irradiation. Metaphase mouse chromosomes with chromatid gap or chromatid breaks induced by heavy ion irradiation were marked under a light microscope. Then the detailed structure of chromosomes of Giemsa-stained or unstained samples was visualized by the AFM. The height data of chromosomes obtained by AFM provided useful information to distinguish chromatid gaps and breaks. A fibrous structure was observed on the unstained chromosome, the average width of which was about 45.8 nm in the image of AFM. These structures were considered to be 30-nm fibers on the chromosome. The structure of the break point regions induced by neon- or carbon-ion irradiation was imaged by AFM. In some cases, the fibrous structure of break points was detected by AFM imaging after carbon ion irradiation. These observations indicated that AFM is a useful tool for analysis of chromosome aberrations induced by heavy ion radiation.  相似文献   

10.
We generalized the results of our own researches of the mechanisms, determined the high (90% BALB-line mice were survived) radioprotection activity by 1,3,4-thiadiazine derivatives. It was determined that this preparat achieves the highest concentrations in the critical for the acute radiation influence tissues. The preparate bind with the cell's membranes, nucleus and mitochondries, blockade the development of the radial reactions on the tissues level. Small quantity passes to the brain marrow, takes part in the regulative processes, which central nervous system is produced, reduces the metabolitical processes in the organism. It doesn't possess the election accumulation in the tumour and it is perspective for the prevention of damage health tissues under irradiation cancroid's therapy.  相似文献   

11.
Clustered DNA damage (locally multiply damaged site) is thought to be a critical lesion caused by ionizing radiation, and high LET radiation such as heavy ion particles is believed to produce high yields of such damage. Since heavy ion particles are major components of ionizing radiation in a space environment, it is important to clarify the chemical nature and biological consequences of clustered DNA damage and its relationship to the health effects of exposure to high LET particles in humans. The concept of clustered DNA damage emerged around 1980, but only recently has become the subject of experimental studies. In this article, we review methods used to detect clustered DNA damage, and the current status of our understanding of the chemical nature and repair of clustered DNA damage.  相似文献   

12.
Repair of ultraviolet radiation damage was examined in an extremely radioresistant organism, Micrococcus radiophilus. Measurement of the number of thymine-containing dimers formed as a function of ultraviolet dose suggests that the ability of this organism to withstand high doses of ultraviolet radiation (20,000 ergs/mm2) is not related to protective screening by pigments. M. radiophilus carries out a rapid excision of thymine dimers at doses of ultraviolet light up to 10,000 ergs/mm2. Synthesis of deoxyribonucleic acid is reduced after irradiation, but after removal of photodamage the rate approaches that in unirradiated cells. A comparison is drawn with Micrococcus luteus and M. radiodurans. We conclude that the extremely high resistance to ultraviolet irradiation in M. radiophilus is at least partly due to the presence of an efficient excision repair system.  相似文献   

13.
A new method of exposing tissues to X rays in a lead Faraday cage has made it possible to examine directly radiation damage to isolated neuronal tissue. Thin slices of hippocampus from brains of euthanized guinea pigs were exposed to 17.4 ke V X radiation. Electrophysiological recordings were made before, during, and after exposure to doses between 5 and 65 Gy at a dose rate of 1.54 Gy/min. Following exposure to doses of 40 Gy and greater, the synaptic potential was enhanced, reaching a steady level soon after exposure. The ability of the synaptic potential to generate a spike was reduced and damage progressed after termination of the radiation exposure. Recovery was not observed following termination of exposure. These results demonstrate that an isolated neuronal network can show complex changes in electrophysiological properties following moderate doses of ionizing radiation. An investigation of radiation damage directly to neurons in vitro will contribute to the understanding of the underlying mechanisms of radiation-induced nervous system dysfunction.  相似文献   

14.
Cytogenetical studies of cosmonauts' peripheral blood lymphocytes after space flights on MIR orbital station showed a statistically significant increase in the yields of radiation-induced chromosomal aberrations. However, similar studies with in vitro irradiation of biological objects with accelerated charged particles are of great importance for elucidation of the nature of cytogenetical damage induced in vivo. It is also important to investigate the structure of cosmonatus' diseases over their life, in particular, lens opacities and oncological diseases. Thus, the purpose of the investigations planned is to study cytogenetical damage in blood lymphocytes from cosmonauts after space flights on the ISS in vivo, as well as in donor blood lymphocytes after in vitro exposure to accelerated charged particles. The tasks of the project are as follows: determination of the yields and types of chromosomal aberrations in cosmonauts' blood lymphocytes before and after space flights, comparative studies of biological effects induced in vitro by different types of ionizing radiation in human blood lymphocytes in ground experiments, assessment of cytogenetical risks, analysis of the structure of cosmonatus' diseases comparing with that of whole population, study of the mortality and frequency of cataracts and oncological diseases in cosmonauts. The results to be obtained will be used for setting of health norms applied to the influence of radiations of different types, and for elaboration of measures to reduce health risks from space flight factors.  相似文献   

15.
Exposure to space radiation consisting of high-energy charged (56)Fe particles represents a significant health risk for astronauts. (56)Fe-particle radiation affects the synaptic plasticity of the hippocampus and alters its response to the experimental immunological stressor lipopolysaccharide (LPS). We previously showed in mice that 1 month after exposure to (56)Fe-particle radiation, the LPS-induced inhibition of hippocampal long-term potentiation (LTP) was significantly attenuated, resulting in seemingly normal LTP. In the current study, we investigated this phenomenon further at longer times postirradiation. We exposed mice to accelerated iron particles ((56)Fe; 600 MeV/nucleon; 1, 2, 4 Gy; brain only), and 1, 3, 6 or 12 months postirradiation we administered LPS. Four hours after the intraperitoneal LPS injection, we prepared hippocampal slices to measure synaptic excitability and plasticity between CA3-CA1 neurons. In unexposed mice, we confirmed that LPS inhibited LTP at all times. However, in mice exposed to 2 Gy, the LPS-induced LTP inhibition was attenuated and reversed to control values. Such reversal was evident at 1 and 3 months but not 6 and 12 months postirradiation. In addition, at 6 and 12 months postirradiation, we observed inhibition of population spike (PS) amplitudes at 4 Gy that correlated with decrements in dendritic potentials, suggesting synaptic damage. Our data show that (56)Fe-particle radiation affects the response of the hippocampus to an immunological stressor and that the alterations progress over time.  相似文献   

16.
17.
Astronauts participating in extended lunar missions or the projected mission to Mars would likely be exposed to significant doses of high-linear energy transfer (LET) heavy energetic charged (HZE) particles. Exposure to even relatively low doses of such space radiation may result in a reduced latent period for and an increased incidence of lens opacification. However, the determinants of cataractogenesis induced by densely ionizing radiation have not been clearly elucidated. In the current study, we show that age at the time of exposure is a key determinant of cataractogenesis in rats whose eyes have been exposed to 2 Gy of (56)Fe ions. The rate of progression of cataractogenesis was significantly greater in the irradiated eyes of 1-year-old rats compared to young (56-day-old) rats. Furthermore, older ovariectomized rats that received exogenous estrogen treatment (17-β-estradiol) commencing 1 week prior to irradiation and continuing throughout the period of observation of up to approximately 600 days after irradiation showed an increased incidence of cataracts and faster progression of opacification compared to intact rats with endogenous estrogen or ovariectomized rats. The same potentiating effect (higher incidence, reduced latent period) was observed for irradiated eyes of young rats. Modulation of estrogen status in the 1-year-old animals (e.g., removal of estrogen by ovariectomy or continuous exposure to estrogen) did not increase the latent period or reduce the incidence to that of intact 56-day-old rats. Since the rapid onset and progression of cataracts in 1-year-old compared to 56-day-old rats was independent of estrogen status, we conclude that estrogen cannot account for the age-dependent differences in cataractogenesis induced by high-LET radiation.  相似文献   

18.
To clarify the relationship between cell death and chromosomal aberrations following exposure to heavy-charged ion particles beams, exponentially growing Human Salivary Gland Tumor cells (HSG cells) were irradiated with various kinds of high energy heavy ions; 13 keV/μm carbon ions as a low-LET charged particle radiation source, 120 keV/μm carbon ions and 440 keV/μm iron ions as high-LET charged particle radiation sources. X-rays (200 kVp) were used as a reference. Reproductive cell death was evaluated by clonogenic assays, and the chromatid aberrations in G2/M phase and their repairing kinetics were analyzed by the calyculin A induced premature chromosome condensation (PCC) method. High-LET heavy-ion beams introduced much more severe and un-repairable chromatid breaks and isochromatid breaks in HSG cells than low-LET irradiation. In addition, the continuous increase of exchange aberrations after irradiation occurred in the high-LET irradiated cells. The cell death, initial production of isochromatid breaks and subsequent formation of chromosome exchange seemed to be depend similarly on LET with a maximum RBE peak around 100–200 keV/μm of LET value. Conversely, un-rejoined isochromatid breaks or chromatid breaks/gaps seemed to be less effective in reproductive cell death. These results suggest that the continuous yield of chromosome exchange aberrations induced by high-LET ionizing particles is a possible reason for the high RBE for cell death following high-LET irradiation, alongside other chromosomal aberrations additively or synergistically.  相似文献   

19.
20.
High linear energy transfer (LET) radiation from space heavy charged particles or a heavier ion radiotherapy machine kills more cells than low LET radiation, mainly because high LET radiation-induced DNA damage is more difficult to repair. Relative biological effectiveness (RBE) is the ratio of the effects generated by high LET radiation to low LET radiation. Previously, our group and others demonstrated that the cell-killing RBE is involved in the interference of high LET radiation with non-homologous end joining but not homologous recombination repair. This effect is attributable, in part, to the small DNA fragments (≤40 bp) directly produced by high LET radiation, the size of which prevents Ku protein from efficiently binding to the two ends of one fragment at the same time, thereby reducing non-homologous end joining efficiency. Here we demonstrate that Ape1, an enzyme required for processing apurinic/apyrimidinic (known as abasic) sites, is also involved in the generation of small DNA fragments during the repair of high LET radiation-induced base damage, which contributes to the higher RBE of high LET radiation-induced cell killing. This discovery opens a new direction to develop approaches for either protecting astronauts from exposure to space radiation or benefiting cancer patients by sensitizing tumor cells to high LET radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号