首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glvr1 encodes the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related gene Glvr2 encodes the human receptor for amphotropic murine leukemia viruses (A-MLVs). The two proteins are 62% identical in their amino acid sequences and are predicted to have 10 transmembrane domains and five extracellular loops. A stretch of nine amino acids (region A) in the predicted fourth extracellular loop was previously shown to be critical for the function of Glvr1 as receptor for GALV and FeLV-B. Glvr1 and -2 show clusters of amino acid differences in several of their predicted extracellular loops, with the highest degree of divergence in region A. Chimeras were made between the two genes to further investigate the role of Glvr1 region A in defining receptor specificity for GALV and FeLV-B and to map which regions of Glvr2 control receptor specificity for A-MLVs. Region A from Glvr1 was sufficient to confer receptor specificity for GALV upon Glvr2, with the same chimera failing to act as a receptor for FeLV-B. However, introduction of additional N- or C-terminal Glvr1-encoding sequences in addition to Glvr1 region A-encoding sequences resulted in functional FeLV-B receptors. Therefore, FeLV-B is dependent on Glvr1 sequences outside region A for infectivity. The receptor specificity of Glvr2 for A-MLV could not be mapped to a single critical region; rather, N-terminal as well as C-terminal Glvr2-encoding sequences could confer specificity for A-MLV infection upon Glvr1. Surprisingly, though GALV/FeLV-B and A-MLV belong to different interference groups, some chimeras functioned as receptors for all three viruses.  相似文献   

2.
Pit1, the receptor for gibbon ape leukemia virus (GALV), is proposed to be an integral membrane protein with five extracellular loops. Chimeras made between Pit1 homologs differing in permissivity for infection and between Pit1 and the related protein Pit2 have shown that the fourth extracellular loop plays a critical role in infection. However, further elucidation of the roles of the extracellular loops in infection is hampered by the high level of sequence similarity among these proteins. The sodium-dependent phosphate transporter, Pho-4, from the filamentous fungus Neurospora crassa is distantly related to Pit1 and -2, showing an amino acid identity of only 35% to Pit1 in the putative extracellular loops. We show here that Pho-4 itself does not function as a receptor for GALV. Introduction of 12 Pit1-specific amino acid residues in the putative fourth extracellular loop of Pho-4 resulted in a functional GALV receptor. Therefore, the presence of a Pit1 loop 4-specific sequence is sufficient to confer receptor function for the mammalian retrovirus GALV on the fungal phosphate transporter Pho-4.  相似文献   

3.
Human PiT2 (PiT2) is a multiple-membrane-spanning protein that functions as a type III sodium phosphate cotransporter and as the receptor for amphotropic murine leukemia virus (A-MuLV). Human PiT1 (PiT1), another type III sodium phosphate cotransporter, is a highly related protein that functions as a receptor for gibbon ape leukemia virus but not for A-MuLV. The ability of PiT1 and PiT2 to function as discrete viral receptors with unique properties presumably is reflected in critical residue differences between these two proteins. Early efforts to map the region(s) within PiT2 that is important for virus binding and/or entry relied on infection results obtained with PiT1-PiT2 chimeric cDNAs expressed in Chinese hamster ovary (CHOK1) cells. These attempts to localize the PiT2 virus-binding site were hampered because they were based on infectivity, not binding, assays, and therefore, receptors that bound but failed to facilitate virus entry could not be distinguished from receptors that did not bind virus. Using a more accurate topological model for PiT2 as well as an A-MuLV receptor-binding assay, we have identified extracellular domain one (ECD1) of the human PiT2 receptor as being important for A-MuLV binding and infection.  相似文献   

4.
Feline leukemia virus subgroup B (FeLV-B) and gibbon ape leukemia virus (GALV) utilize the human protein Pit1 but not the related protein, Pit2, as receptor. A stretch of 9 amino acids, named region A, was identified in the putative fourth extracellular loop of Pit1 (residues 550 through 558) as critical for FeLV-B and GALV receptor function. However, the presence of Pit1 region A did not confer receptor function for FeLV-B upon Pit2, while it did so for GALV. We have here shown that the presence of two Pit1-specific loop 4 residues (tyrosine 546 and valine 548) in addition to Pit1 region A is sufficient to make Pit2 an efficient FeLV-B receptor; that is, a stretch of 13 amino acids encompassing all loop 4 amino acid differences between Pit1 and Pit2 comprises a C-terminal determinant for FeLV-B receptor function. Thus, the same limited receptor region is sufficient to confer receptor function for both viruses upon Pit2.  相似文献   

5.
Murine cells are typically resistant to gibbon ape leukemia virus (GALV). MMMol, a Japanese feral mouse cell line, is an exception in that these cells are susceptible to infection by GALV. We show here that MMMol cells are further distinguished by their unusual receptor properties. MMMol cells infected by GALV are resistant to subsequent infection not only by GALV but also by amphotropic murine leukemia virus. This suggests that GALV can enter MMMol via not only the GALV receptor (MolPit1) but also the amphotropic murine leukemia virus receptor (MolPit2). Therefore, MolPit2 was cloned, sequenced, and compared with the previously reported sequence of MolPit1. Earlier studies have shown that a stretch of nine residues (position 550 to 558) in the fourth extracellular domain of Pit1 is crucial for GALV entry and that an acidic residue at position 550 is indispensable. However, MolPit1 has isoleucine at this position and MolPit2 has glutamine at the corresponding position (position 522), thus breaking this consensus. To determine what effect these specific changes in the fourth extracellular domain of MolPit1 and MolPit2 have on GALV receptor function, chimeric receptors were made by substituting the fourth extracellular domain of either MolPit1 or MolPit2 for the same region of Pit2, a nonfunctional receptor for GALV. These chimeras were then tested in MDTF, a cell line that lacks functional GALV receptors and is resistant to GALV. Results show that MDTF expressing these chimeras became susceptible to GALV, whereas cells expressing wild-type Pit2 remained resistant. Further, the MolPit1 chimera was identical to Pit1 in efficiency, but the MolPit2 chimera proved substantially less efficient.  相似文献   

6.
The Chinese hamster cell lines E36 and CHOK1 dramatically differ in susceptibility to amphotropic murine leukemia virus (A-MuLV) and gibbon ape leukemia virus (GALV); E36 cells are highly susceptible to both viruses, CHOK1 cells are not. We have previously shown that GALV can infect E36 cells by using both its own receptor, HaPit1, and the A-MuLV receptor, HaPit2. Given that the two cell lines are from the same species, the loss of function of both of these receptors in CHOK1 cells is surprising. Other studies have shown that CHOK1 cells secrete proteins that block A-MuLV entry into CHOK1 as well as E36, suggesting the two A-MuLV receptors are functionally identical. However, CHOK1 conditioned medium does not block GALV entry into E36, indicating the secreted inhibitors do not block HaPit1. HaPit1 and ChoPit1 therefore differ as receptors for GALV; ChoPit1 is either inactivated by secreted factors or intrinsically nonfunctional. To determine why GALV cannot infect CHOK1, we cloned and sequenced ChoPit1 and ChoPit2. ChoPit2 is almost identical to HaPit2, which explains why CHOK1 conditioned medium blocks A-MuLV entry via both receptors. Although ChoPit1 and HaPit1 are 91% identical, a notable difference is at position 550 in the fourth extracellular region, shown by several studies to be crucial for GALV infection. Pit1 and HaPit1 have aspartate at 550, whereas ChoPit1 has threonine at this position. We assessed the significance of this difference for GALV infection by replacing the aspartate 550 in Pit1 with threonine. This single substitution rendered Pit1 nonfunctional for GALV and suggests that threonine at 550 inactivates ChoPit1 as a GALV receptor. Whether native ChoPit1 functions for GALV was determined by interference assays using Lec8, a glycosylation-deficient derivative of CHOK1 that is susceptible to both viruses and that has the same receptors as CHOK1. Unlike with E36, GALV and A-MuLV exhibited reciprocal interference when infecting Lec8, suggesting that they use the same receptor. We conclude both viruses can use ChoPit2 in the absence of the inhibitors secreted by CHOK1 and ChoPit1 is nonfunctional.  相似文献   

7.
Pit1 is the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related human protein Pit2 is a receptor for amphotropic murine leukemia virus (A-MuLV). The A-MuLV-related isolate 10A1 can utilize both Pit1 and Pit2 as receptors. A stretch of amino acids named region A was identified in Pit1 (residues 550 to 558 in loop 4) as critical for GALV and FeLV-B receptor function. We have here investigated the role of region A in A-MuLV and 10A1 entry. Insertion of a single amino acid in region A of mouse Pit1 resulted in a functional A-MuLV receptor, showing that region A plays a role in A-MuLV infection. Moreover, the downregulation of 10A1 receptor function by changes in region A of human Pit1 indicates that this region is also involved in 10A1 entry. Therefore, region A seems to play a role in infection by all viruses utilizing Pit1 and/or Pit2 as receptors.  相似文献   

8.
The three type C retroviruses, gibbon ape leukemia virus (GALV), simian sarcoma-associated virus (SSAV), and feline leukemia virus subgroup B (FeLV-B), infect human cells by interacting with the same cell surface receptor, GLVR1. Using LacZ retroviral pseudotypes and murine cells transfected with mutant GLVR1 expression vectors, we show that the same 9-amino-acid region of human GLVR1 is critical for infection by the three viruses. Rat cells were not susceptible to infection by LacZ (FeLV-B) pseudotypes because of a block at the receptor level. We found multiple amino acid differences from human GLVR1 in the 9-amino-acid critical region of rat GLVR1. Expression of a human-rat chimeric GLVR1 in murine cells demonstrated that rat GLVR1 could function as a receptor for GALV and SSAV but not for FeLV-B. Substitution of human GLVR1 amino acids in the critical region of rat GLVR1 identified three amino acids as responsible for resistance to FeLV-B infection; two of these affect SSAV infection, but none affects GALV infection.  相似文献   

9.
Xu W  Eiden MV 《Journal of virology》2011,85(7):3498-3506
BHK cells remain resistant to xenotropic murine retrovirus-related virus (XMRV) or gibbon ape leukemia virus (GALV) infection, even when their respective receptors, Xpr1 or PiT1, are expressed. We set out to determine the stage at which viral infection is blocked and whether this block is mediated by a dominant-negative factor or the absence of a requisite ancillary factor. BHK cells bind neither XMRV nor GALV envelope proteins. BHK cells expressing the appropriate receptors bind XMRV or GALV envelope proteins. BHK cells can be infected by NZB-XMV(New Zealand Black mouse xenotropic murine virus)-enveloped vectors, expressing an envelope derived from a xenotropic retrovirus that, like XMRV, employs Xpr1 as a receptor, and also by vectors bearing the envelope of 10A1 murine leukemia virus (MLV), a murine retrovirus that can use PiT1 as a receptor. The retroviral vectors used in these analyses differ solely in their viral envelope proteins, suggesting that the block to XMRV and GALV infection is mediated at the level of envelope-receptor interactions. N-linked glycosylation of the receptors was not found to mediate resistance of receptor-expressing BHK cells to GALV or XMRV, as shown by tunicamycin treatment and mutation of the specific glycosylation site of the PiT1 receptor. Hybrid cells produced by fusing BHKXpr1 or BHKPiT1 to XMRV- or GALV-resistant cells, respectively, can mediate efficient XMRV or GALV infection. These findings indicate that BHK cells lack a factor that is required for infection by primate xenotropic viruses. This factor is not required for viruses that use the same receptors but were directly isolated from mice.  相似文献   

10.
Pseudotypes of gibbon ape leukemia virus/simian sarcoma-associated virus (GALV/SSAV) and feline leukemia virus subgroup B (FeLV-B) have been constructed by rescuing a Moloney murine leukemia virus vector genome with wild-type GALV/SSAV or FeLV-B. The resulting recombinant viruses utilized core and envelope proteins from the wild-type virus and conferred resistance to growth in L-histidinol upon infected cells by virtue of the HisD gene encoded by the vector genome. They displayed the host range specificity of the rescuing viruses and could be neutralized by virus-specific antisera. Receptor cross-interference was observed when the GALV/SSAV or FeLV-B pseudotypes were used to superinfect cells productively infected with either GALV/SSAV or FeLV-B. Although murine cells are resistant to FeLV-B infection, murine cells expressing the human gene for the GALV/SSAV receptor became susceptible to FeLV-B infection. Therefore GALV/SSAV and FeLV-B utilize the same cell surface receptor.  相似文献   

11.
Tailor CS  Nouri A  Kabat D 《Journal of virology》2000,74(20):9797-9801
Chinese hamster ovary (CHO) cells are resistant to infections by gibbon ape leukemia virus (GALV) and amphotropic murine leukemia virus (A-MLV) unless they are pretreated with tunicamycin, an inhibitor of N-linked glycosylation. These viruses use the related sodium-phosphate symporters Pit1 and Pit2, respectively, as receptors in nonhamster cells, and evidence has suggested that the corresponding transporters of CHO cells may be masked by tunicamycin-sensitive secreted inhibitors. Although the E36 line of Chinese hamster cells was reported to secrete the putative Pit2 inhibitor and to be sensitive to the inhibitory CHO factors, E36 cells are highly susceptible to both GALV and A-MLV in the absence of tunicamycin. Moreover, expression of E36 Pit2 in CHO cells conferred tunicamycin-independent susceptibilities to both viruses. Based on the latter results, it was suggested that E36 Pit2 must functionally differ from the endogenous Pit2 of CHO cells. To test these ideas, we analyzed the receptor properties of CHO Pit1 and Pit2 in CHO cells. Surprisingly, and counterintuitively, transfection of a CHO Pit2 expression vector into CHO cells conferred strong susceptibility to both GALV and A-MLV, and similar overexpression of CHO Pit1 conferred susceptibility to GALV. Thus, CHO Pit2 is a promiscuous functional receptor for both viruses, and CHO Pit1 is a functional receptor for GALV. Similarly, we found that the natural resistance of Mus dunni tail fibroblasts to subgroup C feline leukemia viruses (FeLV-C) was eliminated simply by overexpression of the endogenous FeLV-C receptor homologue. These results demonstrate a novel and simple method to unmask latent retroviral receptor activities that occur in some cells. Specifically, resistances to retroviruses that are caused by subthreshold levels of receptor expression or by stoichiometrically limited masking or interference mechanisms can be efficiently overcome simply by overexpressing the endogenous receptors in the same cells.  相似文献   

12.
Murine leukemia virus (MLV)-derived envelope proteins containing alterations in or adjacent to the highly conserved PHQ motif present at the N terminus of the envelope surface subunit (SU) are incorporated into vector particles but are not infectious due to a postbinding block to viral entry. These mutants can be rendered infectious by the addition of soluble receptor-binding domain (RBD) proteins in the culture medium. The RBD proteins that rescue the infectivity of these defective MLV vectors can be derived from the same MLV or from other MLVs that use distinct receptors to mediate entry. We have now constructed functional immunologically reactive gibbon ape leukemia virus (GALV) envelope proteins, tagged with a feline leukemia virus (FeLV)-derived epitope tag, which are efficiently incorporated into infectious particles. Tagged GALV envelope proteins bind specifically to cells expressing the phosphate transporter protein Pit1, demonstrating for the first time that Pit1 is the binding receptor for GALV and not a coreceptor or another type of GALV entry factor. We have also determined that GALV particles bearing SU proteins with an insertion C-terminal to the PHQ motif (GALV I(10)) bind Pit1 but fail to infect cells. Incubation with soluble GALV RBD renders GALV I(10) particles infectious, whereas incubation with soluble RBDs from MLV or FeLV-B does not. This finding is consistent with the results obtained by Lauring et al. using FeLV-T, a virus that employs Pit1 as a receptor but requires soluble FeLV RBD for entry. MLV and GALV RBDs are not able to render FeLV-T infectious (A. S. Lauring, M. M. Anderson, and J. Overbaugh, J. Virol. 75:8888-8898, 2001). Together, these results suggest that fusion-defective FeLV-T and GALV are restricted to homologous RBD rescue of infectivity.  相似文献   

13.
The ecotropic murine leukemia virus (E-MuLV) receptor expressed on Mus dunni tail fibroblast (MDTF) cells is a receptor for all E-MuLVs with the notable of Moloney murine leukemia virus (Mo-MuLV). Substitution of isoleucine for valine at position 214 in the third extracellular region (the putative E-MuLV binding site) of the MDTF receptor molecule allows this molecule to function as a Mo-MuLV receptor (M.V. Eiden, K. Farrell, J. Warsowe, L. A. Mahan, and C. A. Wilson, J. Virol. 67:4056-4061, 1993). We have now determined that treating MDTF cells with tunicamycin, an inhibitor of N-linked glycosylation, also renders them susceptible to Mo-MuLV infection. Two potential N-linked glycosylation sites are present in the third extracellular regions of both the NIH 3T3 and MDTF ecotropic receptors. The glycosylation site at position 229 of the MDTF receptor cDNA was eliminated by substituting a threonine codon for the asparagine codon. Mo-MuLV-resistant human HOS cells, expressing this form of the receptor, are susceptible to Mo-MuLV infection. Thus, our studies suggest that without a glycan moiety at position 229, the valine residue at 214 is no longer restrictive for Mo-MuLV infection. BHK-21 and CHO K1 hamster cells also express glycosylation-inactivated forms of the ecotropic receptor. Sequence analysis of these receptors together with our analysis of MDTF receptor function suggests that a single asparagine-linked glycosylation site is responsible for glycosylation inactivation of these receptors.  相似文献   

14.
Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.  相似文献   

15.
The gibbon ape leukemia virus (GALV), the amphotropic murine leukemia virus (AMLV) and the human T-cell leukemia virus (HTLV) are retroviruses that specifically bind nutrient transporters with their envelope glycoproteins (Env) when entering host cells. Here, we used tagged ligands derived from GALV, AMLV, and HTLV Env to monitor the distribution of their cognate receptors, the inorganic phosphate transporters PiT1 and PiT2, and the glucose transporter GLUT1, respectively, in basal conditions and after acute energy deficiency. For this purpose, we monitored changes in the distribution of PiT1, PiT2 and GLUT1 in the cerebellum, the frontal cortex, the corpus callosum, the striatum and the substantia nigra (SN) of C57/BL6 mice after administration of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridinium (MPTP), a mitochondrial complex I inhibitor which induces neuronal degeneration in the striato-nigral network.  相似文献   

16.
Human cells express distinct but related receptors for the gibbon ape leukemia virus (GALV) and the amphotropic murine leukemia virus (A-MuLV), termed Pit1 and Pit2, respectively. Pit1 is not able to function as a receptor for A-MuLV infection, while Pit2 does not confer susceptibility to GALV. Previous studies of chimeric receptors constructed by interchanging regions of Pit1 and Pit2 failed to clarify the determinants unique to Pit2 which correlate with A-MuLV receptor function. In order to identify which regions of Pit2 are involved in A-MuLV receptor function, we exchanged the putative second and third extracellular domains of Pit1, either individually or together, with the corresponding regions of Pit2. Our functional characterization of these receptors indicates a role for the putative second extracellular domain (domain II) in A-MuLV infection. We further investigated the influence of domain II with respect to A-MuLV receptor function by performing site-specific mutagenesis within this region of Pit2. Many of the mutations had little or no effect on receptor function. However, the substitution of serine for methionine at position 138 (S138M) in a Pit1 chimera containing domain II of Pit2 resulted in a 1,000-fold reduction in A-MuLV receptor function. Additional mutations made within domain II of the nonfunctional S138M mutant restored receptor function to nearly wild-type efficiency. The high degree of tolerance for mutations as well as the compensatory effect of particular substitutions observed within domain II suggests that an element of secondary structure within this region plays a critical role in the interaction of the receptor with A-MuLV.  相似文献   

17.
We have previously reported the cloning and sequencing of both the chicken and human vitamin D3 receptor cDNAs. A comparison of their deduced amino acid sequence with that of the other classic steroid hormone receptors and the receptor for thyroid hormone indicates that there are two regions of conservation between these molecules. The first is a 70 amino acid, cysteine-rich sequence (C1), the second region (C2) is a 62 amino acid region located towards the carboxyl terminus of the proteins. In other systems the former has been identified as a region responsible for DNA binding activity, whereas the latter represents the NH2-terminal boundary of the hormone binding domain. We present here evidence utilizing eucaryotic expression of cDNA encoding the hVDR C1 domain, followed by a DNA cellulose chromatography assay, which confirms that the DNA binding activity resides in this region of the receptor for vitamin D3. Additionally, the vitamin D3 receptor contains a 60 amino acid portion at its carboxyl terminus (C3) which exhibits homology with the receptor for thyroid hormone. Conservation in this region of the molecule is found only between homologous or closely related receptors. This indicates a relationship between the vitamin D3 receptor and the receptor for thyroid hormone and may suggest that they evolved from a single primordial gene.  相似文献   

18.
Gammaretroviruses that enter cells via binding to a surface receptor use one of two fundamental mechanisms. In the first, binding of the virus particle to its cognate receptor is followed by fusion and internalization. The second, less common mechanism requires the addition of an accessory protein in order to achieve fusion and entry into the target cells; this protein is usually the soluble form of the envelope protein containing the receptor-binding domain (RBD). For some viruses, such as amphotropic murine leukemia virus (A-MLV), particles with fusion-defective envelope proteins can enter cells in the presence of their own RBD or that of another viral envelope, regardless of its cognate receptor, suggesting that these viruses share a common entry mechanism. A notable exception is gibbon ape leukemia virus (GALV). Fusion-impaired GALV envelope mutants can be trans-activated for infectivity only by GALV RBDs. Using dually functional GALV/A-MLV receptors, we examined the role of receptor with respect to which RBD could overcome fusion impaired virus entry.  相似文献   

19.
Pharmacological analysis of ligand binding to the beta-adrenergic receptor (beta AR) has revealed the existence of two distinct receptor subtypes (beta 1 and beta 2) which are the products of different genes. The predicted amino acid sequences of the beta 1 and beta 2 receptors differ by 48%. To identify the regions of the proteins responsible for determining receptor subtype, chimeras were constructed from domains of the human beta 1 and hamster beta 2 receptors. Analysis of the ligand-binding characteristics of these hybrid receptors revealed that residues in the middle portion of the beta AR sequence, particularly around transmembrane regions 4 and 5, contribute to the subtype specific binding of agonists. Smaller molecular replacements of regions of the hamster beta 2 AR with the analogous regions from the avian beta 1 AR, however, failed to identify any single residue substitution capable of altering the subtype specificity of the receptor. These data indicate that, whereas sequences around transmembrane regions 4 and 5 may contribute to conformations which influence the ligand-binding properties of the receptor, the subtype-specific differences in amine-substituted agonist binding cannot be attributed to a single molecular interaction between the ligand and any amino acid residue which is divergent between the beta 1 and beta 2 receptors.  相似文献   

20.
Region A of Pit1 (residues 550 to 558 in domain IV) and related receptors has remained the only sequence implicated in gibbon ape leukemia virus (GALV) infection, and an acidic residue at the first position appeared indispensable. The region has also been proposed to be the GALV binding site, but this lacks empirical support. Whether an acidic residue at the first position in this sequence is a definitive requirement for GALV infection has also remained unclear; certain receptors retain function even in the absence of this acidic residue. We report here that in Pit1 an acidic residue is dispensable not only at position 550 but also at 553 alone and at both positions. Further, the virus requires no specific residue at either position. Mutations generated a collection of region A sequences, often with fundamentally different physicochemical properties (overall hydrophobicity or hydrophilicity and net charge of -1, or 0, or +1), and yet Pit1 remained an efficient GALV receptor. A comparison of these sequences and a few previously published ones from highly efficient GALV receptors revealed that every position in region A can vary without affecting GALV entry. Even Pit2 is nonfunctional for GALV only because it has lysine at the first position in its region A, which is otherwise highly diverse from region A of Pit1. We propose that region A itself is not the GALV binding motif and that other sequences are required for virus entry. Indeed, certain Pit1/Pit2 chimeras revealed that sequences outside domain IV are specifically important for GALV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号