首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haptokinetic cell migration across surfaces is mediated by adhesion receptors including beta1 integrins and CD44 providing adhesion to extracellular matrix (ECM) ligands such as collagen and hyaluronan (HA), respectively. Little is known, however, about how such different receptor systems synergize for cell migration through three-dimensionally (3-D) interconnected ECM ligands. In highly motile human MV3 melanoma cells, both beta1 integrins and CD44 are abundantly expressed, support migration across collagen and HA, respectively, and are deposited upon migration, whereas only beta1 integrins but not CD44 redistribute to focal adhesions. In 3-D collagen lattices in the presence or absence of HA and cross-linking chondroitin sulfate, MV3 cell migration and associated functions such as polarization and matrix reorganization were blocked by anti-beta1 and anti-alpha2 integrin mAbs, whereas mAbs blocking CD44, alpha3, alpha5, alpha6, or alphav integrins showed no effect. With use of highly sensitive time-lapse videomicroscopy and computer-assisted cell tracking techniques, promigratory functions of CD44 were excluded. 1) Addition of HA did not increase the migratory cell population or its migration velocity, 2) blocking of the HA-binding Hermes-1 epitope did not affect migration, and 3) impaired migration after blocking or activation of beta1 integrins was not restored via CD44. Because alpha2beta1-mediated migration was neither synergized nor replaced by CD44-HA interactions, we conclude that the biophysical properties of 3-D multicomponent ECM impose more restricted molecular functions of adhesion receptors, thereby differing from haptokinetic migration across surfaces.  相似文献   

2.
The effects of chemically induced hypoxia and ionizing radiation on the adhesive properties of MG-63 human osteosarcoma three-dimensional spheroids were investigated. Hypoxia was induced by addition of CoCl2 to small, nonhypoxic spheroids and verified by HIF-1alpha expression. In addition, the possible role of important cell adhesion molecules involved in tumor dissemination in inducing adhesive changes were also studied. In particular, two key integrins (i.e., the alpha chain of the fibronectin receptor, alpha5, and the alpha chain of the collagen receptor, alpha2), an important member of the immunoglobulin superfamily (CD54 or ICAM-1) and the strategic molecule CD44 (H-CAM, the principal receptor for hyaluronan) were examined. Because of the important role of fibronectin in adhesive processes, variations in this extracellular matrix component were also examined. The results seem to indicate that CoCl2-induced hypoxia greatly increases adhesion of MG-63 spheroids to both tissue culture plates and plates coated with fibronectin or collagen when compared to controls, while ionizing radiation induces a great decrease in this attachment. Furthermore, chemically induced hypoxia also partially inhibits the effects of ionizing radiation. The data also show that these adhesive changes are accompanied by concomitant variations in the expression of alpha5 and alpha2 integrins, CD44, and CD54 and fibronectin.  相似文献   

3.
A single primary cilium is found in chondrocytes and other connective tissue cells. We have previously shown that extracellular matrix (ECM) macromolecules such as collagen fibers closely associate with chondrocyte primary cilia, and their points of contact are characterized by electron-opaque plaques suggesting a direct link between the ECM and the cilium. This study examines the expression of receptors for ECM molecules on chondrocyte primary cilia. Embryonic chick sterna were fluorescently labeled with antibodies against alpha and beta integrins, NG2, CD44, and annexin V. Primary cilia were labeled using acetylated alpha-tubulin antibody. Expression of ECM receptors was examined on chondrocyte plasma membranes and their primary cilia using immunofluorescence and confocal microscopy. All receptors examined showed a punctate distribution on the plasma membrane. alpha2, alpha3, and beta1 integrins and NG2 were also present on primary cilia, whereas annexin V and CD44 were excluded. The number of receptor-positive cilia varied from 8/50 for NG2 to 43/50 for beta1 integrin. This is the first study to demonstrate the expression of integrins and NG2 on chondrocyte primary cilia. The data strongly suggest that chondrocyte primary cilia have the necessary machinery to act as mechanosensors, linking the ECM to cytoplasmic organelles responsible for matrix production and secretion.  相似文献   

4.
5.
Integrins are cell-surface receptors that mediate cell attachment to extracellular matrix components. The pericellular matrix in cartilage not only is a mechanical framework, but is also important for chondrocyte differentiation and stabilization of the phenotype. The interaction between chondrocytes and pericellular matrix is mediated, in part, by integrin receptors. We have previously demonstrated the presence of beta1-integrins in the cartilage matrix of organoid culture of limb buds from 12-day-old mouse embryos by immunohistological methods. In order to corroborate these findings, we have further investigated the distribution of integrins in the cartilage matrix by immunoelectron microscopy and by immunoprecipitation methods. Cartilage tissue of limb buds of 17-day-old mouse embryos was treated with collagenase and the cell-free and cellular protein-free supernatant was removed and used for immunoprecipitation experiments. Immunoprecipitation with antibodies against beta1-, alpha1-, alpha3-, and alpha5beta1-integrins and collagen type II, followed by immunoblotting with the same antibodies, demonstrated the presence of these integrins and collagen type II in the supernatant. The integrins found in the cartilage matrix could have been either secreted or shed by the cells. The question as to whether they have a function in the cartilage matrix, such as interlinking, in the matrix organization or in the stabilization of matrix components remains to be elucidated.  相似文献   

6.
Differentiation of skeletal tissues, such as bone, ligament and cartilage, is regulated by complex interaction between genetic and epigenetic factors. In the present study, we attempted to elucidate the possible role of cell-extracellular matrix (ECM) adhesion on the inhibitory regulation in chondrogenesis responding to the tension force. The midpalatal suture cartilages in rats were expanded by orthopedic force. In situ hybridization for type I and II collagens, immunohistochemical analysis for fibronectin, alpha5 and beta1 integrins, paxillin, and vinculin, and cytochemical staining for actin were used to demonstrate the phenotypic change of chondrocytes. Immunohistochemical analysis for phosphorylation and nuclear translocation of extracellular signal-regulated kinase (ERK)-1/2 was performed. The role of the cell-ECM adhesion in the response of the chondroprogenitor cells to mechanical stress and the regulation of gene expression of focal adhesion kinase (FAK) and integrins were analyzed by using an in vitro system. A fibrous suture tissue replaced the midpalatal suture cartilage by the expansive force application for 14 days. The active osteoblasts that line the surface of bone matrix in the newly formed suture tissue strongly expressed the type I collagen gene, whereas they did not express the type II collagen gene. Although the numbers of precartilaginous cells expressing alpha5 and beta1 integrin increased, the immunoreactivity of alpha5 integrin in each cell was maintained at the same level throughout the experimental period. During the early response of midpalatal suture cartilage cells to expansive stimulation, formation of stress fibers, reorganization of focal adhesion contacts immunoreactive to a vinculin-specific antibody, and phosphorylation and nuclear translocation of ERK-1/2 were observed. In vitro experiments were in agreement with the results from the in vivo study, i.e. the inhibited expression of type II collagen and upregulation in integrin expression. The arginine-glycine-aspartic acid-containing peptide completely rescued chondrogenesis from tension-mediated inhibition. Thus, we conclude that stretching activates gene expression of beta1 integrin and FAK and inhibits chondrogenesis through cell-ECM interactions of chondroprogenitor cells.  相似文献   

7.
During angiogenesis capillary endothelial cells undergo a coordinated set of modifications in their interactions with extracellular matrix components. In this study we have investigated the effect of the prototypical angiogenic factor basic fibroblast growth factor (bFGF) on the expression and function of several integrins in microvascular endothelial cells. Immunoprecipitation experiments with antibodies to individual subunits indicated that microvascular cells express at their surface several integrins. These include the alpha 1 beta 1, alpha 2 beta 1, and alpha 3 beta 1 laminin/collagen receptors; the alpha 6 beta 1 laminin receptor; the alpha 5 beta 1 and alpha v beta 1 fibronectin receptors; the alpha 6 beta 4 basement membrane receptor; and the alpha v beta 3 and alpha v beta 5 vitronectin receptors. Treatment with bFGF caused a significant increase in the surface expression of the alpha 2 beta 1, alpha 3 beta 1, alpha 5 beta 1, alpha 6 beta 1, alpha 6 beta 4, and alpha v beta 5 integrins. In contrast, the level of expression of the alpha 1 beta 1 and alpha v beta 3 integrins was decreased in bFGF-treated cells. Immunoprecipitation of metabolically labeled cells indicated that bFGF increases the biosynthesis of the alpha 3, alpha 5, alpha 6, beta 4, and beta 5 subunits and decreases the production of the alpha v and beta 3 subunits. These results suggest that bFGF modulates integrin expression by altering the biosynthesis of individual alpha or beta subunits. In accordance with the upregulation of several integrins observed in bFGF-treated cells, these cells adhered better to fibronectin, laminin, vitronectin, and type I collagen than did untreated cells. The largest differences in beta 1 integrin expression occurred approximately 72 h after exposure to bFGF, at a time when the expression of the endothelial cell-to-cell adhesion molecule endoCAM was also significantly upregulated. In contrast, a shorter exposure to bFGF (24-48 h) was required for the maximal induction of plasminogen activator production in the same cells. Taken together, these results show that bFGF causes significant changes in the level of expression and function of several integrins in microvascular endothelial cells.  相似文献   

8.
The contribution of hyaluronan-dependent pericellular matrix to TGF-β1-driven induction and maintenance of myofibroblasts is not understood. Hyaluronan is an extracellular matrix (ECM) glycosaminoglycan important in cell adhesion, proliferation and migration, and is implicated in myofibroblast formation and maintenance. Reduced turnover of hyaluronan has been linked to differentiation of myofibroblasts and potentiation of lung fibrosis. Fibronectin is a fibril forming adhesive glycoprotein that is also upregulated following induction with TGF-β1. Although they are known to bind each other, the interplay between hyaluronan and fibronectin in the pericellular matrix during myofibroblast induction and matrix assembly is not clear. This study addresses the role of hyaluronan and its interaction with fibrillar matrix components during myofibroblast formation. Hyaluronan and fibronectin were increased and co-localized in the ECM following myofibroblast induction by TGF-β1. Inhibition of hyaluronan synthesis in TGF-β1-induced lung myofibroblasts over a 4 day period with 4-methyl umbelliferone (4-MU) further enhanced myofibroblast morphology, caused increased deposition of fibronectin and type I collagen in the ECM, and increased expression of alpha-smooth muscle actin and hyaluronan synthase 2 (HAS2) mRNA. Hyaluronan oligosaccharides or hyaluronidase treatment, which more effectively disrupted the pericellular matrix, had similar effects. CD44 and β1 integrins co-localized in the cell membrane and along some stress fibers. However, CD44 and hyaluronan were specifically excluded from focal adhesions, and associated primarily with cortical actin. Time-lapse imaging of the immediate effects of hyaluronidase digestion showed that hyaluronan matrix primarily mediates attachment of membrane and cortical actin between focal contacts, suggesting that surface adhesion through hyaluronan and CD44 is distinct from focal adhesion through β1 integrins and fibronectin. Fluorescein-labeled hyaluronan bound regularly along fibronectin fibers and co-localized more with β1 integrin and less with CD44. Therefore, the hyaluronan matrix can interfere with the assembly of fibrillar ECM components, and this interplay regulates the degree of myofibroblast formation. These data also suggest that adhesion through hyaluronan matrix impacts cytoskeletal organization, and is potentially part of a clutch mechanism that regulates stick and slip of myofibroblasts by affecting the adhesion to and organization of fibronectin and collagen.  相似文献   

9.
Chondrocyte integrin expression and function   总被引:12,自引:0,他引:12  
Loeser RF 《Biorheology》2000,37(1-2):109-116
The extracellular matrix (ECM) is an "information rich" environment and interactions between the chondrocyte and ECM regulate many biological processes important to cartilage homeostasis and repair including cell attachment, growth, differentiation, and survival. The integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these processes. Chondrocytes have been found to express several members of the integrin family which can serve as receptors for fibronectin (alpha 5 beta 1), types II and VI collagen (alpha 1 beta 1, alpha 2 beta 1, alpha 10 beta 1), laminin (alpha 6 beta 1), and vitronectin and osteopontin (alpha V beta 3). Integrin expression can be regulated by growth factors including IGF-I and TGF-beta. By providing a link between the ECM and the cytoskeleton, integrins may be important transducers of mechanical stimuli. Integrin binding stimulates intracellular signaling which can affect gene expression and regulate chondrocyte function. Further studies are needed to more clearly define the role of integrins in cartilage.  相似文献   

10.
Hyaluronan exerts a variety of biological effects on cells including changes in cell migration, proliferation, and matrix metabolism. However, the signaling pathways associated with the action of hyaluronan on cells have not been clearly defined. In some cells, signaling is induced by the loss of cell-hyaluronan interactions. The goal of this study was to use hyaluronan oligosaccharides as a molecular tool to explore the effects of changes in cell-hyaluronan interactions and determine the underlying molecular events that become activated. In this study, hyaluronan oligosaccharides induced the loss of extracellular matrix proteoglycan and collagen from cultured slices of normal adult human articular cartilage. This loss was coincident with an increased expression of matrix metalloproteinase (MMP)-13. MMP-13 expression was also induced in articular chondrocytes by hyaluronan (HA) hexasaccharides but not by HA tetrasaccharides nor high molecular weight hyaluronan. MMP-13 promoter-reporter constructs in CD44-null COS-7 cells revealed that both CD44-dependent and CD44-independent events mediate the induction of MMP-13 by hyaluronan oligosaccharides. Electromobility gel shift assays demonstrated the activation of chondrocyte NFkappaB by hyaluronan oligosaccharides. NFkappaB activation was also documented in C-28/I2 immortalized human chondrocytes by luciferase promoter assays and phosphorylation of IKK-alpha/beta. The link between activation of NFkappaB and MMP-13 induction by HA oligosaccharides was further confirmed through the use of the NFkappaB inhibitor helenalin. Inhibition of MAP kinases also demonstrated the involvement of p38 MAP kinase in the hyaluronan oligosaccharide induction of MMP-13. Our findings suggest that hyaluronan-CD44 interactions affect matrix metabolism via activation of NFkappaB and p38 MAP kinase.  相似文献   

11.
Biomechanical forces are major epigenetic factors that determine the form and differentiation of skeletal tissues, and may be transduced through cell adhesion to the intracellular biochemical signaling pathway. To test the hypothesis that stepwise stretching is translated to molecular signals during early chondrogenesis, we developed a culture system to study the proliferation and differentiation of chondrocytes. Rat embryonic day-12 limb buds were microdissected and dissociated into cells, which were then micromass cultured on a silicone membrane and maintained for up to 7 days. Stepwise-increased stretching was applied to the silicone membrane, which exerted shearing stress on the cultures on day 4 after the initiation of chondrogenesis. Under stretched conditions, type II collagen expression was significantly inhibited by 44% on day 1 and by 67% on day 2, and this difference in type II collagen reached 80% after 3 days of culture. Accumulation of type II collagen protein and the size of the chondrogenic nodules had decreased by 50% on day 3. On the other hand, expression of the non-chondrogenic marker fibronectin was significantly upregulated by 1.8-fold on day 3, while the up-regulation of type I collagen was minimal, even by day 3. The downregulation in the expression of chondrogenic markers was completely recovered when cell-extracellular matrix attachment was inhibited by Gly-Arg-Gly-Asp-Ser-Pro-Lys peptide or by the application of blocking antibodies for alpha2, alpha5 or beta1 integrins. We conclude that shearing stress generated by stepwise stretching inhibits chondrogenesis through integrins, and propose that signal transduction from biomechanical stimuli may be mediated by cell-extracellular matrix adhesion.  相似文献   

12.
Latrunculin and cytochalasin decrease chondrocyte matrix retention.   总被引:3,自引:0,他引:3  
The proteoglycan-rich extracellular matrix (ECM) directly associated with the cells of articular cartilage is anchored to the chondrocyte plasma membrane via interaction with the hyaluronan receptor CD44. The cytoplasmic tail of CD44 interacts with the cortical cytoskeleton. The objective of this study was to determine the role of the actin cytoskeleton in CD44-mediated matrix assembly by chondrocytes and cartilage matrix retention and homeostasis. Adult bovine articular cartilage tissue slices and isolated chondrocytes were treated with latrunculin or cytochalasin. Tissues were processed for histology and chondrocytes were examined for CD44 expression and pericellular matrix assembly. Treatments that disrupt the actin cytoskeleton reduced chondrocyte pericellular matrix assembly and the retention of proteoglycan within cartilage explants. There was enhanced detection of a neoepitope resulting from proteolysis of aggrecan. Cytoskeletal disruption did not reduce CD44 expression, as monitored by flow cytometry, but detergent extraction of CD44 was enhanced and hyaluronan binding was decreased. Thus, disruption of the cytoskeleton reduces the anchorage of CD44 in the chondrocyte membrane and the capacity of CD44 to bind its ligand. The results suggest that cytoskeletal disruption within cartilage uncouples chondrocytes from the matrix, resulting in altered metabolism and deleterious changes in matrix structure.  相似文献   

13.
In this paper we show that tumor necrosis factor alpha (TNF alpha) and interferon gamma (IFN gamma) alter the expression of extracellular matrix receptors (integrins) in cultured human endothelial cells. Endothelial cells express at their surface integrins of the beta 1 and beta 3 groups that include receptors for fibronectin, collagen, laminin, and vitronectin. After treatment for 72 h with a combination of TNF alpha and IFN gamma, the level of the vitronectin receptor (alpha v beta 3) at the cell surface decreases by 70%, whereas the amounts of the beta 1 integrins remain unchanged. The decreased expression of the alpha v beta 3 complex at the cell surface is due to a selective effect of TNF alpha and IFN gamma on the regulation of the beta 3 subunit synthesis at the translational level. In fact, although the steady state levels of the mRNA for the beta 3 subunit are comparable in control and treated cells, the overall synthesis of the beta 3 subunit is decreased by a factor of 70%. No significant alteration of the synthesis of the companion alpha v subunit is detectable in cytokine-treated cells. As a consequence of the decreased expression of the receptor, cytokine-treated cells show decreased ability to adhere to vitronectin but adhere normally to fibronectin. These data show that two important inflammatory mediators, TNF alpha and IFN gamma, can modify the interaction of endothelial cells with the extracellular matrix by selectively altering the expression of specific cell surface integrin complexes.  相似文献   

14.
Integrins are a family of cell-surface receptors intimately involved in the interactions of cells with their extracellular matrix. These receptors comprise an alpha and beta subunit in noncovalent association and many have been shown to recognize and bind an arginine-glycine-aspartate (RGD) sequence contained within their specific extracellular matrix ligand. Fibroblasts express integrin receptors belonging to two major subfamilies. Some of the members within the subfamily defined by beta 1 (VLA) are receptors for collagen but, perhaps surprisingly, the other major subfamily of integrins on fibroblasts--that defined by the alpha chain of the vitronectin receptor, alpha v--all appear to bind primarily vitronectin and/or fibronectin. In the present study we show that RGD-containing peptides expose cryptic binding sites on the alpha v-associated integrins enabling them to function as collagen receptors. The addition of RGD-containing peptides to fibroblasts cultured on type I collagen induced dramatic cell elongation and, when the cells were contained within collagen matrices, the peptides induced marked contraction of the gels. These processes were inhibited by Fab fragments of a monoclonal antibody against an alpha v integrin. Also, alpha v-associated integrins from cell lysates bound to collagen I affinity columns in the presence, but not in the absence, of RGD-containing peptides. These data suggest a novel regulatory control for integrin function. In addition, because the cryptic collagen receptors were shown to be implicated in the contraction of collagen gels, the generation of such binding forces suggests that this may be the major biological role for these integrins in processes such as wound healing.  相似文献   

15.
Tumor cell binding to components of the basement membrane is well known to trigger intracellular signaling pathways. Signaling ultimately results in the modulation of gene expression, facilitating metastasis. Type IV collagen is the major structural component of the basement membrane and is known to be a polyvalent ligand, possessing sequences bound by the alpha1beta1, alpha2beta1, and alpha3beta1 integrins, as well as cell surface proteoglycan receptors, such as CD44/chondroitin sulfate proteoglycan (CSPG). The role of alpha2beta1 integrin and CD44/CSPG receptor binding on human melanoma cell activation has been evaluated herein using triple-helical peptide ligands incorporating the alpha1(IV)382-393 and alpha1(IV)1263-1277 sequences, respectively. Gene expression and protein production of matrix metalloproteinases-1 (MMP-1), -2, -3, -13, and -14 were modulated with the alpha2beta1-specific sequence, whereas the CD44-specific sequence yielded significant stimulation of MMP-8 and lower levels of modulation of MMP-1, -2, -13, and -14. Analysis of enzyme activity confirmed different melanoma cell proteolytic potentials based on engagement of either the alpha2beta1 integrin or CD44/CSPG. These results are indicative of specific activation events that tumor cells undergo upon binding to select regions of basement membrane collagen. Based on the present study, triple-helical peptide ligands provide a general approach for monitoring the regulation of proteolysis in cellular systems.  相似文献   

16.
Cellular adhesion receptors termed integrins play an important role in the interaction of cells with extracellular matrix (ECM) during wound healing, development and tumorigenesis. During such events, ECM may become modified or damaged which could alter the types of adhesive signals presented to cells. In this study, cell adhesion and affinity chromatography experiments were performed to determine whether different integrins interact with denatured versus native ECM molecules. Human melanoma cells were found to adhere to denatured versus native type I collagen through different integrins. The cells adhere to denatured collagen through the alpha v beta 3 integrin and this interaction is inhibited by an RGD containing peptide but not by a control peptide. In contrast, adhesion to native type I collagen appears to be mediated by several beta 1 integrins and thus, is not inhibited by either alpha v beta 3 antibodies or the RGD peptide. Affinity chromatography reveals a marked increase in the quantity of alpha v beta 3 isolated on denatured collagen versus native collagen-sepharose. These results suggest that RGD sites in type I collagen may be masked and that they become exposed upon denaturation of the molecule. Wounding of extracellular matrix may, thus, expose RGD sites in collagens that facilitate the interaction of cells with damaged extracellular matrix through RGD binding integrins.  相似文献   

17.
Several receptors for the extracellular matrix protein collagen have been described which belong to the superfamily of receptors collectively known as integrins. Although several integrins have been shown to interact with extracellular matrix molecules via a common recognition site, arginine-glycine-aspartic Acid (RGD), within the beta 1 integrin subfamily, only the fibronectin receptor (alpha 5 beta 1) has been convincingly shown to interact with RGD. In the present study, we tested whether a collagen receptor could interact with RGD. Adhesion of an osteosarcoma cell line, MG-63, to immobilized collagen I was inhibited by the cyclic RGD-containing peptide, C*GRGDSPC* (where C* indicates that Cys participates in disulfide), and not by the linear GRGDSP or the non-RGD-containing cyclic peptide, C*GKGESPC*. Similarly, using collagen-Sepharose affinity chromatography, a heterodimeric protein could be specifically eluted from the column by the cyclic RGD peptide. Immunoprecipitations of the eluted material with monoclonal antibodies showed reactivity with the collagen receptor alpha 2 beta 1 and not alpha 3 beta 1. Our data demonstrate that RGD peptides can interact with the collagen receptor, and the differences seen with the linear and cyclic peptide suggest that the cyclic C*GRGDSPC* has a higher avidity for the receptor than the more flexible linear GRGDSP. In this paper, we provide supportive evidence that one possible mode of collagen interaction with alpha 2 beta 1 is via the RGD recognition sequence.  相似文献   

18.
Luo ZP  Sun YL  Fujii T  An KN 《Biorheology》2004,41(3-4):247-254
Type II collagen and hyaluronan are the two major components of extracellular molecules in cartilage and play an important role in mechanical functions of extracellular matrix. Currently, their mechanical properties have been investigated only at the gross-level. In this study, the mechanical properties of single type II collagen and hyaluronan molecules were directly measured using optical tweezers technique. The persistence length was found to be 11.2+/-8.4 nm in type II collagen and 4.5+/-1.2 nm in hyaluronan. This result suggested that type II collagen is stiffer than hyaluronan at the individual molecule level, which supports the general concept that collagen is responsible for resisting tensile force. The experimental system developed here also provides a powerful tool for quantifying mechanical properties of extracellular matrix at the single molecule level.  相似文献   

19.
Tumor cell invasion of basement membranes (BM) represents one of the critical steps in the metastatic process. Tumor cell recognition of individual BM matrix components may involve individual cell adhesion receptors, such as integrins or cell surface proteoglycans, or may involve a coordinate action of both types of receptors. In this study, we have focused on the identification of a cell surface CD44/chondroitin sulfate proteoglycan (CSPG) and alpha 2 beta 1 integrin on human melanoma cells that are both directly involved in the in vitro invasion of reconstituted BM via a type IV collagen-dependent mechanism. Interfering with cell surface expression of human melanoma CSPG with either p-nitro-phenyl-beta-D-xylopyranoside treatment or anti-CD44 monoclonal antibody (mAb) preincubation (mAb) preincubation inhibits melanoma cell invasion through reconstituted BM. These treatments also strongly inhibit melanoma cell migration on type IV collagen, however, they are ineffective at inhibiting cell adhesion to type IV collagen. Purified melanoma cell surface CD44/CSPG, or purified chondroitin sulfate, bind to type IV collagen affinity columns, consistent with a role for CD44/CSPG-type IV collagen interactions in mediating tumor cell invasion. In contrast, melanoma cell migration on laminin (LM) does not involve CD44/CSPG, nor does CD44/CSPG bind to LM, suggesting that CD44/CSPG-type IV collagen interactions are specific in nature. Additionally, anti-alpha 2 and anti-beta 1 integrin mAbs are capable of blocking melanoma cell invasion of reconstituted BM. Both of these anti-integrin mAbs inhibit melanoma cell adhesion and migration on type IV collagen, whereas only anti-beta 1 mAb inhibits cell adhesion to LM. Collectively, these results indicate that melanoma cell adhesion to type IV collagen is an important consideration in invasion of reconstituted BM in vitro, and suggest that CD44/CSPG and alpha 2 beta 1 integrin may collaborate to promote human melanoma cell adhesion, migration, and invasion in vivo.  相似文献   

20.
Internalization of the Hyaluronan Receptor CD44 by Chondrocytes   总被引:1,自引:0,他引:1  
Chondrocytes express CD44 as a primary receptor for the matrix macromolecule hyaluronan. Hyaluronan is responsible for the retention and organization of proteoglycan within cartilage, and hyaluronan-chondrocyte interactions are important for the assembly and maintenance of the cartilage matrix. Bovine articular chondrocytes were used to study the endocytosis and turnover of CD44 and the effects of receptor occupancy on this turnover. Matrix-intact chondrocytes exhibit approximately a 6% internalization of cell surface CD44 by 4 h. Treatment with Streptomyces hyaluronidase to remove endogenous pericellular matrix increased internalization to approximately 20% of cell surface CD44 at 4 h. This turnover could be partially inhibited by the addition of exogenous hyaluronan to these matrix-depleted chondrocytes. Cell surface biotin-labeled CD44 was internalized by chondrocytes and this internalization was decreased in the presence of hyaluronan. Colocalization of internalized CD44 and fluorescein-labeled hyaluronan in intracellular vesicles correlates with the previous results of receptor-mediated endocytosis pathway for the degradation of hyaluronan by acid hydrolases. Taken together, our results indicate that CD44 is internalized by chondrocytes and that CD44 turnover is modulated by occupancy with hyaluronan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号