首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
副干酪乳杆菌HD1.7群体感应行为   总被引:2,自引:1,他引:1  
【目的】Paracin1.7是从副干酪乳杆菌(Lactobacillus paracasei)HD1.7发酵液中提取的一种细菌素,本文主要研究菌株HD1.7在发酵过程中调控Paracin1.7代谢的群体感应机制。【方法】利用杯碟法检测不同生长条件下菌株HD1.7培养液的抑菌活性,通过调整培养基营养成分的多寡,控制培养液中细胞密度。【结果】菌株HD1.7的抑菌活性与其细胞密度密切相关,只有当细胞密度达到一定的阈值(OD600为0.8,菌体干重为0.331 1 g/L)时,菌株才能表现抑菌活性;以发酵上清液作为信号分子,当添加不同浓度信号分子至低于阈值浓度培养液后,菌株抑菌活性受到不同程度的影响,并且在去除信号分子后,菌株的抑菌活性明显降低。【结论】细菌素Paracin1.7是存在于HD1.7发酵液中的特殊的群体感应信号分子,可进行自我诱导。细菌素Paracin1.7的抑菌活性受到HD1.7群体感应系统的调控。  相似文献   

2.
副干酪乳杆菌的应用研究进展   总被引:2,自引:0,他引:2  
副干酪乳杆菌(Lactobacillus paracasei)属于乳杆菌属中的干酪乳杆菌(Lactobacillus casei)群。本文简单介绍了副干酪乳杆菌的分布、分类学地位及其主要鉴定手段,综述了该菌种及其细菌素和质粒在L-乳酸的工业生产、食品发酵及防腐、医疗保健、废料的循环利用和科学研究等方面的应用。  相似文献   

3.
H2O2 production by certain Lactobacillus strains is one of the mechanisms that helps to regulate the vaginal ecosystem. This paper describes the kinetics of H2O2 production by two different strains of Lactobacillus paracasei subsp. paracasei under different culture conditions and the effect of this metabolite on the growth of Staphylococcus aureus. L. paracasei F2 produced 2.72 mmol 1-1 H2O2 while L. paracasei F28 produced 1.84 mmol l(-1), both in agitated cultures. Although L. paracasei F2 produced a higher H2O2 concentration than L. paracasei F28, H2O2 production per number of live bacterial cells was 10-fold higher for F28. The latter also showed a faster decrease in viability during the stationary phase. There were no detectable levels of H2O2 in cultures without agitation. H2O2-producing lactobacilli inhibited growth of S. aureus in a plaque assay and in mixed cultures, depending on the initial inoculum of the pathogen.  相似文献   

4.
摘要:【目的】分离纯化(Lactobacillus paracasei)HD1.7所产生的细菌素并分析其特性。【方法】细菌素Paracin 1.7的纯化采用色谱技术,其分子量检测采用十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE),利用琼脂扩散法测定细菌素活力。【结果】Paracin 1.7分离于我国传统发酵食品酸菜发酵液中,其产生菌为副干酪乳杆菌。 Paracin 1.7可以抑制其它微生物的生长,为细菌素。该菌在稳定期可产生大量Paracin 1.7。经过阳离子交换层析、凝胶过滤层析以及高效液相色谱(HPLC),对该细菌素进行了初步纯化,并经Tricine-SDS-PAGE检测其分子量大约为11 kDa。Paracin 1.7抑菌谱较广,其抑菌范围包括Proteus, Bacillus, Enterobacter, Staphylococcus, Escherichia, Lactobacillus, Microccus, Pseudomonas, Salmonella, Saccharomyces,其中有些为食品源致病菌。该细菌素在酸性及高温下稳定,对几种蛋白质酶敏感。该细菌素对敏感菌株的作用方式为抑菌。在4oC保存4个月后,Paracin 1.7的抑菌活性保持稳定。【结论】基于细菌素Paracin 1.7的性质,该细菌素可用作食品防腐剂。  相似文献   

5.
Fifteen strains of Lactobacillus species, isolated from different samples of curd were screened for their ability to produce more extracellular protease. The proteolytic activities of these strains based on casein hydrolysis showed a variation of 1.26-5.80 U ml(-l), with Lactobacillus IH8 showing the maximum activity and was identified as L. paracasei. Different cultural conditions for enhanced production of protease by L. paracasei were optimized. The optimal conditions for production of the enzyme were an incubation temperature of 35 degrees C and a medium pH of 6.0. The maximum proteolytic activity of L. paracasei (7.28 Uml(-1)) was achieved after 48 h of cultivation. The kinetic parameters such as product yield (Yp/x,), growth yield (Yx/s), specific product yield (qp) and specific growth yield (qs) coefficients also revealed that the values of experimental results were kinetically significant.  相似文献   

6.
[目的]分离纯化(Lactobacillus paracasei)HD1.7所产生的细菌素并分析其特性.[方法]细菌素Paracin1.7的纯化采用色谱技术,其分子量检测采用十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE),利用琼脂扩散法测定细菌素活力.[结果]Paracin 1.7分离于我国传统发酵食品酸菜发酵液中,其产生菌为副干酪乳杆菌.Paracin 1.7可以抑制其它微生物的生长,为细菌素.该菌在稳定期可产生大量Paracin 1.7.经过阳离子交换层析、凝胶过滤层析以及高效液相色谱(HPLC),对该细菌素进行了初步纯化,并经Tricine-SDS-PAGE检测其分子量大约为11 kDa.Paracin 1.7抑菌谱较广,其抑菌范围包括Proteus,Bacillus,Enterobacter,Staphylococcus,Escherichia,Lactobacillus,Microccus,Pseudomonas,Salmonella,Saccharomyces,其中有些为食品源致病菌.该细菌素在酸性及高温下稳定,对几种蛋白质酶敏感.该细菌素对敏感菌株的作用方式为抑菌.在4℃保存4个月后,Paraein 1.7的抑菌活性保持稳定.[结论]基于细菌素Paracin 1.7的性质,该细菌素可用作食品防腐剂.  相似文献   

7.
Spray drying of skim milk was evaluated as a means of preserving Lactobacillus paracasei NFBC 338 and Lactobacillus salivarius UCC 118, which are human-derived strains with probiotic potential. Our initial experiments revealed that NFBC 338 is considerably more heat resistant in 20% (wt/vol) skim milk than UCC 118 is; the comparable decimal reduction times were 11.1 and 1.1 min, respectively, at 59 degrees C. An air outlet temperature of 80 to 85 degrees C was optimal for spray drying; these conditions resulted in powders with moisture contents of 4.1 to 4.2% and viable counts of 3.2 x 10(9) CFU/g for NFBC 338 and 5.2 x 10(7) CFU/g for UCC 118. Thus, L. paracasei NFBC 338 survived better than L. salivarius UCC 118 during spray drying; similar results were obtained when we used confocal scanning laser microscopy and LIVE/DEAD BacLight viability staining. In addition, confocal scanning laser microscopy revealed that the probiotic lactobacilli were located primarily in the powder particles. Although both spray-dried cultures appeared to be stressed, as shown by increased sensitivity to NaCl, bacteriocin production by UCC 118 was not affected by the process, nor was the activity of the bacteriocin peptide. The level of survival of NFBC 338 remained constant at approximately 1 x 10(9) CFU/g during 2 months of powder storage at 4 degrees C, while a decline in the level of survival of approximately 1 log (from 7.2 x 10(7) to 9.5 x 10(6) CFU/g) was observed for UCC 118 stored under the same conditions. However, survival of both Lactobacillus strains during powder storage was inversely related to the storage temperature. Our data demonstrate that spray drying may be a cost-effective way to produce large quantities of some probiotic cultures.  相似文献   

8.
AIM: Purification and characterization of an aminotransferase (AT) specific for the degradation of branched-chain amino acids from Lactobacillus paracasei subsp. paracasei CHCC 2115. METHODS AND RESULTS: The purification protocol consisted of anion exchange chromatography, affinity chromatography and hydrophobic interaction chromatography. The enzyme was found to exist as a monomer with a molecular mass of 40-50 kDa. The AT converted isoleucine, leucine and valine at a similar rate with alpha-ketoglutarate as the amino group acceptor; minor activity was shown for methionine. The enzyme had pH and temperature optima of 7.3 and 43 degrees C, respectively, and activity was detected at the pH and salt conditions found in cheese (pH 5.2, 4% NaCl). Hg2+ completely inhibited the enzyme, and the inhibition pattern was similar to that for pyridoxal-5'-phosphate-dependent enzymes, when studying the effect of other metal ions, thiol- and carbonyl-binding agents. The N-terminal sequence of the enzyme was SVNIDWNNLGFDYMQLPYRYVAHXKDGVXD, and had at the amino acid level, 60 and 53% identity to a branched-chain amino acid AT of Lact. plantarum and Lactococcus lactis, respectively. CONCLUSIONS: The results suggest that Lact. paracasei subsp. paracasei CHCC 2115 may contribute to development of flavour in cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of this work contribute to the knowledge of transamination performed by cheese-related bacteria, and in the understanding and control of amino acid catabolism and the production of aroma compounds.  相似文献   

9.
Hydrophilic and electrostatic cell surface properties of eight Lactobacillus strains were characterized by using the microbial adhesion to solvents method and microelectrophoresis, respectively. All strains appeared relatively hydrophilic. The strong microbial adhesion to chloroform, an acidic solvent, in comparison with microbial adhesion to hexadecane, an apolar n-alkane, demonstrated the particularity of lactobacilli to have an important electron donor and basic character and consequently their potential ability to generate Lewis acid-base interactions with a support. Regardless of their electrophoretic mobility (EM), strains were in general slightly negatively charged at alkaline pH. A pH-dependent behavior concerning cell surface charges was observed. The EM decreased progressively with more acidic pHs for the L. casei subsp. casei and L. paracasei subsp. paracasei strains until the isoelectric point (IEP), i.e., the pH value for which the EM is zero. On the other hand, the EM for the L. rhamnosus strains was stable from pH 8 to pH 3 to 4, at which point there was a shift near the IEP. Both L. casei subsp. casei and L. paracasei subsp. paracasei strains were characterized by an IEP of around 4, whereas L. rhamnosus strains possessed a markedly lower IEP of 2. The present study showed that the cell surface physicochemical properties of lactobacilli seem to be, at least in part and under certain experimental conditions, particular to the bacterial species. Such differences detected between species are likely to be accompanied by some particular changes in cell wall chemical composition.  相似文献   

10.
Four strains of Lactobacillus paracasei subsp. paracasei and Lact. plantarum are investigated within 16 d in order to determine the formation of metabolites during the degradation of grass fructan and inulin as well as the subsequent fermentation to lactic acid. The decrease of the total content of fructans throughout the entire time of investigation shows differences specific for strains as for either fructan substrate. The strain Lact. plantarum V 54/6 completely degrades the grass fructan and inulin within no longer than 13 d. The utilization of fructan by the other strains is temporally delayed, and in a smaller degree of degradation, especially remarkable for inulin cleavage. The structural modifications of decomposed fructans are characterized by a noticeable shift of the mean DP from approximately 80 to the oligomeric range analysed by anion exchange chromatography. Additionally, a newly formed series of peaks of oligomeric saccharides was detected during the degradation of grass fructan and inulin. Part of the fructose that is derived from cleavage of fructans is fermented immediately by the LAB strains into differently high amounts of lactic acid. The abundance of formed fructose is enriched in the medium to a varying extent, depending on the strain as well as the substrate used. From these results a number of fructan degradative enzymes in lactobacilli have been concluded to possibly vary their modes of regulation: strain specific exo- and endohydrolases with different activities against β-2,1 and β-2,6 linked fructan.  相似文献   

11.
TKU010 was isolated from infant vomited milk and identified as Lactobacillus paracasei subsp. paracasei. TKU010 had desirable properties concerning its ability to withstand adverse conditions in the gastrointestinal tract. The hydrolysate of casein enhanced the growth of TKU010 most obviously (17.20-18.25 OD(660)), followed by the hydrolysate of SPP (16.00-15.06 OD(660)). Incubating with SPP, both the culture supernatant of TKU010 on the first day and the fourth day showed inhibitory activities on E. coli BCRC13086, F. oxysporum BCRC32121 and A. fumigatus BCRC30099. TKU010 culture supernatant (1% SPP) incubated for 3 days has high antioxidant activity; the DPPH scavenging ability was 75% per ml. Thus, TKU010 could be preferably used as a starter to produce fermented milk with possibly interesting organoleptic properties. Besides, we have shown that squid pen wastes can be utilized to generate a high value-added product, and have revealed its hidden potential in the production of biocontrol agents and functional foods.  相似文献   

12.
Screening for antimicrobial features of 197 propionibacteria and tests with several antifungal lactobacilli led to the development of three protective cultures containing Propionibacterium jensenii SM11 and Lactobacillus paracasei subsp. paracasei strain SM20, SM29 or SM63. These cultures showed inhibitory activities (up to 5 orders of magnitude) against yeasts in dairy products such as yoghurt or cheese surface at refrigerator temperatures (6 degrees C) without an influence on the quality properties of the food. Initial cell numbers of 5 x 10(7) cells/g of propionibacteria and 1 x 10(8) cells/g of lactobacilli were the optimal concentrations to yield a total inhibition of the spoilage yeasts (Candida pulcherrima, Candida magnoliae, Candida parapsilosis and Zygosaccharomyces bailii).  相似文献   

13.
Ten strains of lactobacilli were assessed for their capacity to degrade inulin-type fructans, which are well-known prebiotics. Both oligofructose and inulin were tested. The dairy isolate Lactobacillus acidophilus IBB 801 degraded only oligofructose. The human isolate Lactobacillus paracasei subsp. paracasei 8700:2 degraded oligofructose and long-chain inulin and grew rapidly on both energy sources. In both cases, fractions of different degrees of polymerization were fermented. Moreover, large and short fractions of oligofructose were degraded simultaneously. When L. paracasei subsp. paracasei 8700:2 grew on oligofructose-enriched inulin, oligofructose was preferentially metabolized. In all cases, lactic acid was the main metabolic end product. Significant amounts of acetic acid, formic acid, and ethanol were produced when long-chain inulin or oligofructose-enriched inulin was used as the sole energy source.  相似文献   

14.
The influence of medium components on production of bacteriocins ST242BZ (10.0 kDa) and ST284BZ (3.5 kDa) byLactobacillus paracasei subsp.paracasei ST242BZ and ST284BZ have been studied. Growth in MRS broth (pH of 6.5) yielded bacteriocin levels of 12800 AU/ml. Modified MRS with tryptone as the only nitrogen source, MRS supplemented with KH2PO4 (10–100 g/l), or MRS supplemented with thiamine increased bacteriocin ST242BZ production to 25600 AU/ml. Tryptone, combinations of tryptone, meat extract and yeast extract, or thiamine did not increase bacteriocin ST284BZ production. However, MRS supplemented with K2HPO4 (50–100 g/l) increased bacteriocin ST284BZ production up to 25600 AU/ml. Our results suggest that production of bacteriocins ST242BZ and ST284BZ are stimulated by potassium ions.  相似文献   

15.
对从乳酸菌酸菜发酵液中分离到的能产生抑菌物质的菌株进行了鉴定,并对该菌的发酵产物进行了提取和性质研究。经形态学、生理生化与16SrDNA序列分析鉴定该菌株为副干酪乳杆菌(Lactobacillus paracasei)。抑菌谱试验表明:除酵母菌外,该抑菌物质对革兰氏阳性、阴性菌和多种致病菌均有较强的抑制作用。经有机溶剂萃取法获得了抑菌物质的粗提物,胰蛋白酶水解证明抑菌物质具有蛋白质性质,尿素-SDS-PAGE不连续凝胶电泳法测得抑菌物质的分子量为14000左右。  相似文献   

16.
A PCR-based detection system specific for Lactobacillus paracasei LTH 2579 was developed and applied to follow the fate of the strain in complex ecosystems. This strain was isolated from fruit mash and was characterised as being highly resistant to low pH and bile at concentrations as they occur in the human digestive tract. The application of the subtraction hybridisation technique permitted to identify a 235 bp chromosomal DNA fragment of strain LTH 2579. Based on this target sequence a specific PCR system was developed and combined with the species-specific PCR system for L. paracasei. This combination of PCR based detection systems was successfully applied to monitor L. paracasei LTH 2579 in fermented sausages which were inoculated with this strain (2.0 x 10(7) CFU/g) together with the strongly competitive L. sakei LTH 681 (1.0 x 10(6) CFU/g). At the time of consumption of the sausages the respective counts were 1.8 x 10(7) and 1.4 x 10(8) CFU/g. After consumption of the sausages by three volunteers L. paracasei LTH 2579 was recovered from fecal samples. The counts determined for the strain ranged between 1.2 x 10(7) and 1.5 x 10(8) CFU/g of feces. The fortuitous lactobacilli constituted a share of 5-12% of the lactobacilli in the fecal flora.  相似文献   

17.
Curvacin A is a listericidal bacteriocin produced by Lactobacillus curvatus LTH 1174, a strain isolated from fermented sausage. The response of this strain to an added curing agent (sodium nitrite) in terms of cell growth and bacteriocin production was investigated in vitro by laboratory fermentations with modified MRS broth. The strain was highly sensitive to nitrite; even a concentration of 10 ppm of curing agent inhibited its growth and both volumetric and specific bacteriocin production. A meat simulation medium containing 5 ppm of sodium nitrite was tested to investigate the influence of the gas phase on the growth and bacteriocin production of L. curvatus LTH 1174. Aerating the culture during growth had no effect on biomass formation, but the oxidative stress caused a higher level of specific bacteriocin production and led to a metabolic shift toward acetic acid production. Anaerobic conditions, on the other hand, led to an increased biomass concentration and less growth inhibition. Also, higher maximum volumetric bacteriocin activities and a higher level of specific bacteriocin production were obtained in the presence of sodium nitrite than in fermentations under aerobic conditions or standard conditions of air supply. These results indicate that the inhibitory effect of the curing agent is at least partially masked under anaerobic conditions.  相似文献   

18.
To increase the productivity of lactic acid, a co-culture of lactobacilli was made by mixing 1:1 ratio of Lactobacillus paracasei subsp. paracasei and a fast growing L. delbrueckii subsp. delbrueckii mutant. The culture was embedded on to polyurethane foam (PUF) cubes as a biofilm and used for fermentation. In order to prevent the cell leakage, the PUF cubes were further entrapped in calcium cross-linked alginate. The maximum lactic acid production using a high cell density free culture was >38 g l(-1) from ~40 g l(-1) of reducing sugar within 12 h of fermentation. Using PUF biofilms, the same yield of lactic acid attained after 24 h. When the cubes were further coated with alginate it took 36 h for the maximum yield. Even though, the productivity is slightly lesser with the alginate coating, cell leakage was decreased and cubes were reused without much decrease in production in repeated batches. Using a conventional control inoculum (3%, w/v), it took 120 h to yield same amount of lactic acid.  相似文献   

19.
20.
Curvacin A is a listericidal bacteriocin produced by Lactobacillus curvatus LTH 1174, a strain isolated from fermented sausage. The response of this strain to an added curing agent (sodium nitrite) in terms of cell growth and bacteriocin production was investigated in vitro by laboratory fermentations with modified MRS broth. The strain was highly sensitive to nitrite; even a concentration of 10 ppm of curing agent inhibited its growth and both volumetric and specific bacteriocin production. A meat simulation medium containing 5 ppm of sodium nitrite was tested to investigate the influence of the gas phase on the growth and bacteriocin production of L. curvatus LTH 1174. Aerating the culture during growth had no effect on biomass formation, but the oxidative stress caused a higher level of specific bacteriocin production and led to a metabolic shift toward acetic acid production. Anaerobic conditions, on the other hand, led to an increased biomass concentration and less growth inhibition. Also, higher maximum volumetric bacteriocin activities and a higher level of specific bacteriocin production were obtained in the presence of sodium nitrite than in fermentations under aerobic conditions or standard conditions of air supply. These results indicate that the inhibitory effect of the curing agent is at least partially masked under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号