首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Bacillus subtilis gsiA operon was induced rapidly, but transiently, as cells entered the stationary phase in nutrient broth medium. A mutation at the gsiC locus caused sporulation to be defective and expression of gsiA to be elevated and prolonged. The sporulation defect in this strain was apparently due to persistent expression of gsiA, since a gsiA null mutation restored sporulation to wild-type levels. Detailed mapping experiments revealed that the gsiC82 mutation lies within the kinA gene, which encodes the histidine protein kinase member of a two-component regulatory system. Since mutations in this gene caused a substantial blockage in expression of spoIIA, spoIIG, and spoIID genes, it seems that accumulation of a product of the gsiA operon interferes with sporulation by blocking the completion of stage II. It apparently does so by inhibiting or counteracting the activity of KinA.  相似文献   

3.
4.
5.
6.
7.
spo0H encodes a sigma factor, sigma-H, of RNA polymerase that is required for sporulation in Bacillus subtilis. Null mutations in spo0H block the initiation of sporulation but have no obvious effect on vegetative growth. We have characterized an insertion mutation, csh203::Tn917lac, that makes spo0H essential for normal growth. In otherwise wild-type cells, the csh203::Tn917lac insertion mutation has no obvious effect on cell growth, viability, or sporulation. However, in combination with a mutation in spo0H, the csh203 mutation causes a defect in vegetative growth. The csh203::Tn917lac insertion mutation was found to be located within orf23, the first gene of the rpoD (sigma-A) operon. The transposon insertion separates the major vegetative promoters P1 and P2 from the coding regions of two essential genes, dnaG (encoding DNA primase) and rpoD (encoding the major sigma factor, sigma-A) and leaves these genes under the control of minor promoters, including P4, a promoter controlled by sigma-H. The chs203 insertion mutation caused a 2- to 10-fold increase in expression of promoters recognized by RNA polymerase containing sigma-H. The increased expression of genes controlled by sigma-H in the csh203 single mutant, as well as the growth defect of the csh203 spo0H double mutant, was due to effects on rpoD and not to a defect in orf23 or dnaG.  相似文献   

8.
9.
Bacillus subtilis spo0K mutants are blocked at the first step in sporulation. The spo0K strain was found to contain two mutations: one was linked to the trpS locus, and the other was elsewhere on the chromosome. The mutation linked to trpS was responsible for the sporulation defect (spo-). The unlinked mutation enhanced this sporulation deficiency but had no phenotype on its own. The spo- mutation was located in an operon of five genes highly homologous to the oligopeptide transport (Opp) system of Gram-negative species. Studies with toxic peptide analogues showed that this operon does indeed encode a peptide-transport system. However, unlike the Opp system of Salmonella typhimurium, one of the two ATP-binding proteins, OppF, was not required for peptide transport or for sporulation. The OppA peptide-binding protein, which is periplasmically located in Gram-negative species, has a signal sequence characteristic of lipoproteins with an amino-terminal lipo-amino acid anchor. Cellular location studies revealed that OppA was associated with the cell during exponential growth, but was released into the medium in stationary phase. A major role of the Opp system in Gram-negative bacteria is the recycling of cell-wall peptides as they are released from the growing peptidoglycan. We postulate that the accumulation of such peptides may play a signalling role in the initiation of sporulation, and that the sporulation defect in opp mutants results from an inability to transport these peptides.  相似文献   

10.
11.
Abstract Re-examination of a fusidic acid resistance mutation, fus -426 in Bacillus subtilis JH642 showed that this mutation is closely linked to temperature-sensitive (ts) sporulation in liquid medium, but not on agar plates. This defect was suppressed by a rifampicin-resistance mutation, rif -122, or by the hos -1 mutation, which affects sporulation and colony phenotype.  相似文献   

12.
In response to nutrient limitations, Bacillus subtilis cells undergo a series of morphological and genetic changes that culminate in the formation of endospores. Conversely, excess catabolites inhibit sporulation. It has been demonstrated previously that excess catabolites caused a decrease in culture medium pH in a process that required functional AbrB. Culture medium acidification was also shown to inhibit sigmaH-dependent sporulation gene expression. The studies reported here investigate the effects of AbrB-mediated pH sensing on B. subtilis developmental competence. We have found that neither addition of a pH stabilizer, MOPS (pH 7.5), nor null mutations in abrB blocked catabolite repression of sporulation. Moreover, catabolite-induced culture medium acidification was observed in cultures of catabolite-resistant sporulation mutants, crsA47, rvtA11, and hpr-16, despite their efficient sporulation. These results suggest that AbrB-mediated pH sensing is not the only mechanism regulating catabolite repression of sporulation. The AbrB pathway may function to channel cells toward genetic competence, as opposed to other postexponential differentiation pathways.  相似文献   

13.
Bacillus subtilis cells with mutations in the spoVA operon do not complete sporulation. However, a spoVA strain with mutations that remove all three of the spore's functional nutrient germinant receptors (termed the ger3 mutations) or the cortex lytic enzyme SleB (but not CwlJ) did complete sporulation. ger3 spoVA and sleB spoVA spores lack dipicolinic acid (DPA) and have lower core wet densities and levels of wet heat resistance than wild-type or ger3 spores. These properties of ger3 spoVA and sleB spoVA spores are identical to those of ger3 spoVF and sleB spoVF spores that lack DPA due to deletion of the spoVF operon coding for DPA synthetase. Sporulation in the presence of exogenous DPA restored DPA levels in ger3 spoVF spores to 53% of the wild-type spore levels, but there was no incorporation of exogenous DPA into ger3 spoVA spores. These data indicate that one or more products of the spoVA operon are involved in DPA transport into the developing forespore during sporulation.  相似文献   

14.
The AcrAB-TolC efflux pump plays an intrinsic role in resistance to hydrophobic solvents in Escherichia coli. E. coli OST5500 is hypersensitive to solvents due to inactivation of the acrB gene by insertion of IS30. Suppressor mutants showing high solvent resistance were isolated from OST5500. These mutants produced high levels of AcrE and AcrF proteins, which were not produced in OST5500, and in each mutant an insertion sequence (IS1 or IS2) was found integrated upstream of the acrEF operon, coding for the two proteins. The suppressor mutants lost solvent resistance on inactivation of the acrEF operon. The solvent hypersensitivity of OST5500 was suppressed by introduction of the acrEF operon with IS1 or IS2 integrated upstream but not by introduction of the operon lacking the integrated IS. It was concluded that IS integration activated acrEF, resulting in functional complementation of the acrB mutation. The acrB mutation was also complemented by a plasmid containing acrF or acrEF under the control of Plac. The wild-type tolC gene was found to be essential for complementation of the acrB mutation by acrEF. Thus, it is concluded that in these cells a combination of the proteins AcrA, AcrF, and TolC or the proteins AcrE, AcrF, and TolC is functional in solvent efflux instead of the AcrAB-TolC efflux pump.  相似文献   

15.
The gerP1 transposon insertion mutation of Bacillus cereus is responsible for a defect in the germination response of spores to both L-alanine and inosine. The mutant is blocked at an early stage, before loss of heat resistance or release of dipicolinate, and the efficiency of colony formation on nutrient agar from spores is reduced fivefold. The protein profiles of alkaline-extracted spore coats and the spore cortex composition are unchanged in the mutant. Permeabilization of gerP mutant spores by coat extraction procedures removes the block in early stages of germination, although a consequence of the permeabilization procedure in both wild type and mutant is that late germination events are not complete. The complete hexacistronic operon that includes the site of insertion has been cloned and sequenced. Four small proteins encoded by the operon (GerPA, GerPD, GerPB, and GerPF) are related in sequence. A homologous operon (yisH-yisC) can be found in the Bacillus subtilis genome sequence; null mutations in yisD and yisF, constructed by integrational inactivation, result in a mutant phenotype similar to that seen in B. cereus, though somewhat less extreme and equally repairable by spore permeabilization. Normal rates of germination, as estimated by loss of heat resistance, are also restored to a gerP mutant by the introduction of a cotE mutation, which renders the spore coats permeable to lysozyme. The B. subtilis operon is expressed solely during sporulation, and is sigma K-inducible. We hypothesize that the GerP proteins are important as morphogenetic or structural components of the Bacillus spore, with a role in the establishment of normal spore coat structure and/or permeability, and that failure to synthesize these proteins during spore formation limits the opportunity for small hydrophilic organic molecules, like alanine or inosine, to gain access to their normal target, the germination receptor, in the spore.  相似文献   

16.
In contrast to Escherichia coli and Salmonella typhimurium, Bacillus subtilis could convert ethionine to S-adenosylethionine (SAE), as can Saccharomyces cerevisiae. This conversion was essential for growth inhibition by ethionine because metE mutants which were deficient in S-adenosylmethionine synthetase activity, were resistant to 10 mM ethionine and converted only a small amount of ethionine to SAE. Another mutation (ethA1) produced partial resistance to ethionine (2 mM) and enabled continual sporulation in glucose medium containing 4 mM DL-ethionine. This sporulation induction probably resulted from the effect of SAE, since it was abolished by the addition of a metE1 mutation. The induction of sporulation was not simply controlled by the ratio of SAE to S-adenosylmethionine, but apparently depended on another effect of the ethA1 mutation, which could be demonstrated by comparing the restriction of clear plaque mutants of bacteriophage phi 105 grown in an ethA1 strain with the restriction of those grown in the standard strain. The phages grown in the ethA1 strain showed increased protection against BsuR restriction. We propose that SAE induces sporulation through the inhibition of a key methylation reaction.  相似文献   

17.
18.
19.
Regulation of stage II of sporulation in Bacillus subtilis   总被引:9,自引:0,他引:9  
  相似文献   

20.
The fruiting body development of Myxococcus xanthus consists of two separate but interacting pathways: one for aggregation of many cells to form raised mounds and the other for sporulation of individual cells into myxospores. Sporulation of individual cells normally occurs after mound formation, and is delayed at least 30 h after starvation under our laboratory conditions. This suggests that M. xanthus has a mechanism that monitors progress towards aggregation prior to triggering sporulation. A null mutation in a newly identified gene, espA (early sporulation), causes sporulation to occur much earlier compared with the wild type (16 h earlier). In contrast, a null mutation in an adjacent gene, espB, delays sporulation by about 16 h compared with the wild type. Interestingly, it appears that the espA mutant does not require raised mounds for sporulation. Many mutant cells sporulate outside the fruiting bodies. In addition, the mutant can sporulate, without aggregation into raised mounds, under some conditions in which cells normally do not form fruiting bodies. Based on these observations, it is hypothesized that EspA functions as an inhibitor of sporulation during early fruiting body development while cells are aggregating into raised mounds. The aggregation-independent sporulation of the espA mutant still requires starvation and high cell density. The espA and espB genes are expressed as an operon and their translations appear to be coupled. Expression occurs only under developmental conditions and does not occur during vegetative growth or during glycerol-induced sporulation. Sequence analysis of EspA indicates that it is a histidine protein kinase with a fork head-associated (FHA) domain at the N-terminus and a receiver domain at the C-terminus. This suggests that EspA is part of a two-component signal transduction system that regulates the timing of sporulation initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号