首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Cytokine Actions in the Central Nervous System   总被引:9,自引:0,他引:9  
Cytokines and chemokines have been implicated in contributing to the initiation, propagation and regulation of immune and inflammatory responses. Also, these soluble mediators have important roles in contributing to a wide array of neurological diseases such as multiple sclerosis, AIDS Dementia Complex, stroke and Alzheimers disease. Cytokines and chemokines are synthesized within the central nervous system by glial cells and neurons, and have modulatory functions on these same cells via interactions with specific cell-surface receptors. In this article, I will discuss the ability of glial cells and neurons to both respond to, and synthesize, a variety of cytokines. The emphasize will be on three select cytokines; interferon-gamma (IFN-γ), a cytokine with predominantly proinflammatory effects; interleukin-6 (IL-6), a cytokine with both pro- and anti-inflammatory properties; and transforming growth factor-beta (TGF-β), a cytokine with predominantly immunosuppressive actions. The significance of these cytokines to neurological diseases with an immunological component will be discussed.  相似文献   

2.
Chemokine receptors belong to the superfamily of seven-transmembrane-spanning, G-protein-coupled receptors, and their expression by central nervous system cells is clearly documented. As this gene family has become the target of novel therapeutic development, the analysis of these receptors requires radioligand binding techniques as well as methods that entail assessing receptor stimulation of signal transduction pathways. Herein, we describe specific protocols for measuring radiolabeled chemokine binding to their cognate receptors on cultured glial cells as well as to receptors expressed in heterologous cell systems. Multiple downstream signaling pathways, including intracellular calcium influx and receptor-dependent kinase activation, are associated with chemokine receptor stimulation. Protocols for measuring these signaling events in chemokine-receptor-expressing cells are also presented.  相似文献   

3.
Glial cells of the central nervous system express receptors for the main inhibitory and excitatory neurotransmitters, GABA and glutamate. The glial GABA and glutamate receptors share many properties with the neuronal GABAA and kainate/quisqualate receptors, but are molecularly and, in some aspects, pharmacologically distinct from their neuronal counterparts. The functional role of these receptors is as yet speculative: They have been proposed to control proliferation of astrocytes, serve to balance ion changes at GABAergic synapses, or they could enable the glial cell to detect neuronal synaptic activity.  相似文献   

4.
胶质细胞是中枢神经系统内的一类有别于神经元的细胞,可表达多种神经递质或细胞因子受体,在神经系统的多种功能中扮演着重要角色。组织损伤或炎症引起脊髓胶质细胞大量激活,激活的胶质细胞分泌多种细胞因子和神经-胶质兴奋物质,参与病理性疼痛的产生与维持。以胶质细胞为靶点可能为病理性疼痛的治疗另辟蹊径。  相似文献   

5.
Chemokine-induced lymphocyte migration has long been hypothesized to regulate the appearance and continued presence of lymphocytes and monocytes in tissue-specific autoimmune diseases, including central nervous system autoimmune diseases such as multiple sclerosis. For instance, a large body of evidence points to the temporal association of chemokine expression with the appearance of T lymphocytes and monocytes/macrophages. Furthermore, experiments using mice with targeted mutations for chemokines have shown the importance of those molecules in the development of central nervous system autoimmune disease. We have hypothesized that temporal and spatial expression of chemokines is a key factor in the pathogenesis of experimental autoimmune encephalomyelitis and multiple sclerosis. To test our hypothesis we have employed the strategy of eliminating chemokine function by the passive transfer of chemokine-specific polyclonal antibodies. This approach has allowed us not only to test the function of chemokines in experimental autoimmune encephalomyelitis development, but also to ask questions about the roles of chemokines during disease progression. Moreover, this approach has allowed us to assess the efficacy of targeting chemokines and their receptors for treatment of ongoing disease. In the present report we summarize our experience using anti-chemokine administration for the prevention and treatment of experimental autoimmune encephalomyelitis as well as provide specific examples of how this approach is efficacious for disease treatment.  相似文献   

6.
Astrocytes are one of major glial cell types in the central nervous system (CNS), and can support many functions of neuronal cells. In the present study, we demonstrated that the differentiation of rat embryonic neuronal cells was promoted by treatment with astrocyte and microglia-conditioned medium. Cytokine assays identified that the IL-4, MIP-1, KC, and RANTES as were released from astrocyte, and these chemokines promote differentiation of rat embryonic neuronal cells. However, chemokine-promoted neuronal cell differentiation was suppressed by antibodies of these chemokines and their receptor (CCR5). CCR5 and neuronal cell differentiation marker proteins were found to be colocalized, and their expressions were enhanced by chemokines. Furthermore, the differentiation of neuronal cells from CCR5 knock-out mice and of neuronal cells from mice knocked down with the CCR5 siRNA were significantly reduced and delayed. Bradykinin elevated calcium influx in the embryonic neuronal cells. These data suggest that specific chemokines derived from astrocytes may significantly have influence on the CCR5-mediated differentiation of embryonic neuronal cells.  相似文献   

7.
The developing central nervous system of vertebrates contains an abundant cell type designated radial glial cells. These cells are known as guiding cables for migrating neurons, while their role as precursor cells is less clear. Since radial glial cells express a variety of astroglial characteristics and differentiate as astrocytes after completing their guidance function, they have been considered as part of the glial lineage. Using fluorescence-activated cell sorting, we show here that radial glial cells also are neuronal precursors and only later, after neurogenesis, do they shift towards an exclusive generation of astrocytes. These results thus demonstrate a novel function for radial glial cells, namely their ability to generate two major cell types found in the nervous system, neurons and astrocytes.  相似文献   

8.
Glial glutamate receptors: likely actors in brain signaling.   总被引:1,自引:0,他引:1  
V I Teichberg 《FASEB journal》1991,5(15):3086-3091
It has become clear that the neurotransmitter glutamate does not confine its excitatory effects to central nervous system neurons but interacts also with glial cells. Neurons and glia share the same types of ionotropic and metabotropic glutamate receptors except for the N-methyl-D-aspartate receptor, which is not found on glia. Applied on cultured glial cells, glutamate regulates the opening of receptor channels, activates second messengers, and causes the release of neuroactive compounds. Although glutamate and glutamate receptors confer on cultured glia the ability to receive and emit signals, it remains to be established whether glial signaling takes place in vivo. The chick Bergmann glial cells provide a unique experimental system with which to test the contribution of glial glutamate receptors to neuronal electrical activity. These cells are the exclusive carriers in the cerebellum of functional kainate receptors. The synaptic location of these receptors, their ion channel properties, and their regulation by phosphorylation reactions suggest that glial kainate receptors play a role in regulating synaptic efficacy and plasticity. If proved, this concept may require a modification of the anatomical and functional definition of a synapse to include a glial component as well.  相似文献   

9.
趋化因子及其受体在神经系统发育中的作用   总被引:2,自引:0,他引:2  
趋化因子是具有趋化作用的一类细胞因子,参与白细胞迁移的调控,在炎症中诱导性表达,与炎症过程密切相关,最初的研究主要局限于免疫系统。近几年来研究发现,趋化因子不仅参与神经系统疾病的炎症过程,而且在神经细胞成熟、发育等生理情况下组成性表达,发挥重要的生理调节作用,这一有趣的现象日益成为关注的焦点。本文主要针对趋化因子及其受体在神经系统发育中的作用及相关机制的研究成果予以综述,将有助于深入理解趋化因子与神经系统发育的关系,为进一步的研究提供依据。  相似文献   

10.
Etiopathogenesis of migraine involves different structures of the central nervous system: the trigeminal nerve with nuclei located in the brain stem, vascular system, and the cerebral cortex as well as diverse mechanisms and pathological processes. The multidirectional action of purines in different cell types (blood vessels, neurons, and satellite glial cells) and through different types of purinergic receptors contributes to the etiopathogenesis of migraine pain. Adenosine triphosphate (ATP) and its derivatives are involved in initiation and propagation of migrenogenic signals in several ways: they participate in vasomotor mechanism, cortical spreading depression, and in fast transmission or cross-excitation based on the satellite glial cells in trigeminal ganglion. Contribution of purinergic signaling in the conduction of pain is realized through the activation of P1 and P2 receptors expressed widely in the central nervous system: on the neurons and glial cells as well as on the smooth muscles and endothelium in the vascular system. Therefore, the purinergic receptors can be an excellent target for pharmacologists constructing new antimigraine therapeutics. Moreover, the mechanisms facilitating ATP and adenosine degradation may prevent vasodilatation and thus avoid a secondary central sensitization during a migraine attack. Thus, agonists and antagonists of P receptors as well as ecto-enzymes metabolizing nucleotides/nucleosides could gain the growing attention as therapeutic agents.  相似文献   

11.
Chemokines are not only found in the immune system or expressed in inflammatory conditions: they are constitutively present in the brain in both glial cells and neurons. Recently, the possibility has been raised that they might act as neurotransmitters or neuromodulators. Although the evidence is incomplete, emerging data show that chemokines have several of the characteristics that define neurotransmitters. Moreover, their physiological actions resemble those of neuromodulators in the sense that chemokines usually have few effects by themselves in basal conditions, but modify the induced release of neurotransmitters or neuropeptides. These findings, together with the pharmacological development of agonists and antagonists that are selective for chemokine receptors and can cross the blood-brain barrier, open a new era of research in neuroscience.  相似文献   

12.
13.
Olfactory ensheathing cells: their role in central nervous system repair   总被引:14,自引:0,他引:14  
The olfactory system is an unusual tissue in that it can support neurogenesis throughout life; permitting the in-growth and synapse formation of olfactory receptor axons into the central nervous system (CNS) environment of the olfactory bulb. It is thought that this unusual property is in part due to the olfactory glial cells, termed olfactory ensheathing cells (OECs), but also due to neuronal stem cells. These glial cells originate from the olfactory placode and possess many properties in common with the glial cells from the peripheral nervous system (PNS), Schwann cells. Recent data has suggested that olfactory ensheathing cells are a distinct glial cell type and possess properties, which might make them more suitable for transplant-mediated repair of central nervous system injury models. This paper reviews the biological properties of these cells and illustrates their use in central nervous system repair.  相似文献   

14.
Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of susceptible strains of mice results in wide-spread replication within glial cells accompanied by infiltration of virus-specific T lymphocytes that control virus through cytokine secretion and cytolytic activity. Virus persists within white matter tracts of surviving mice resulting in demyelination that is amplified by inflammatory T cells and macrophages. In response to infection, numerous cytokines/chemokines are secreted by resident cells of the CNS and inflammatory leukocytes that participate in both host defense and disease. Among these are the ELR-positive chemokines that are able to signal through CXC chemokine receptors including CXCR2. Early following JHMV infection, ELR-positive chemokines contribute to host defense by attracting CXCR2-expressing cells including polymorphonuclear cells to the CNS that aid in host defense through increasing the permeability the blood-brain-barrier (BBB). During chronic disease, CXCR2 signaling on oligodendroglia protects these cells from apoptosis and restricts the severity of demyelination. This review covers aspects related to host defense and disease in response to JHMV infection and highlights the different roles of CXCR2 signaling in these processes.  相似文献   

15.
Glial cells   总被引:13,自引:0,他引:13  
The nervous system is built from two broad categories of cells, neurones and glial cells. The glial cells outnumber the neurones and the two cell types occupy a comparable amount of space in nervous tissue. The main glial cell types are, in the central nervous system, astrocytes and oligodendrocytes and, in the peripheral nervous system, Schwann cells, enteric glial cells and satellite cells. In the embryo, glial cells form a cellular framework that permits the development of the rest of the nervous system, and regulate neuronal survival and differentiation. The best known function of glia in the adult is the formation of myelin sheaths around axons thus allowing the fast conduction of signalling essential for nervous system function. Glia also maintain appropriate concentrations of ions and neurotransmitters in the neuronal environment. Increasing body of evidence indicates that glial cells are essential regulators of the formation, maintenance and function of synapses, the key functional unit of the nervous system.  相似文献   

16.
Glial cells are crucial for the proper development and function of the nervous system. In the Drosophila embryo, the glial cells of the peripheral nervous system are generated both by central neuroblasts and sensory organ precursors. Most peripheral glial cells need to migrate along axonal projections of motor and sensory neurons to reach their final positions in the periphery. Here we studied the spatial and temporal pattern, the identity, the migration, and the origin of all peripheral glial cells in the truncal segments of wildtype embryos. The establishment of individual identities among these cells is reflected by the expression of a combinatorial code of molecular markers. This allows the identification of individual cells in various genetic backgrounds. Furthermore, mutant analysis of two of these marker genes, spalt major and castor, reveal their implication in peripheral glial development. Using confocal 4D microscopy to monitor and follow peripheral glia migration in living embryos, we show that the positioning of most of these cells is predetermined with minor variations, and that the order in which cells migrate into the periphery is almost fixed. By studying their lineages, we uncovered the origin of each of the peripheral glial cells and linked them to identified central and peripheral neural stem cells.  相似文献   

17.
Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction.  相似文献   

18.
Calcium and glial cell death   总被引:6,自引:0,他引:6  
Calcium (Ca2+) homeostasis is crucial for development and survival of virtually all types of cells including glia of the central nervous system (CNS). Astrocytes, oligodendrocytes and microglia, the major glial cell types in the CNS, are endowed with a rather sophisticated array of Ca2+-permeable receptors and channels, as well as store-operated channels and pumps, all of which determine Ca2+ homeostasis. In addition, glial cells detect functional activity in neighbouring neurons and respond to it by means of Ca2+ signals that can modulate synaptic interactions. Like in neurons, Ca2+ overload resulting from dysregulation of channels and pumps can be deleterious to glia. In this review, we summarize recent advances in the understanding Ca2+ homeostasis in glial cells, the consequences of its alteration in cell demise as well as in neurological and psychiatric disorders that experience glial cell loss.  相似文献   

19.
Neuroglial cells are fundamental for control of brain homeostasis and synaptic plasticity. Decades of pathological and physiological studies have focused on neurons in neurodegenerative disorders, but it is becoming increasingly evident that glial cells play an irreplaceable part in brain homeostasis and synaptic plasticity. Animal models of brain injury and neurodegenerative diseases have largely contributed to current understanding of astrocyte-specific mechanisms participating in brain function and neurodegeneration. Specifically, gliotransmission (presence of glial neurotransmitters, and their receptors and active transporters), trophic support (release, maturation and degradation of neurotrophins) and metabolism (production of lactate and GSH components) are relevant aspects of astrocyte function in neuronal metabolism, synaptic plasticity and neuroprotection. Morpho-functional changes of astrocytes and microglial cells after traumatic or toxic insults to the central nervous system (namely, reactive gliosis) disrupt the complex neuro-glial networks underlying homeostasis and connectivity within brain circuits. Thus, neurodegenerative diseases might be primarily regarded as gliodegenerative processes, in which profound alterations of glial activation have a clear impact on progression and outcomes of neuropathological processes. This review provides an overview of current knowledge of astrocyte functions in the brain and how targeting glial-specific pathways might ultimately impact the development of therapies for clinical management of neurodegenerative disorders.  相似文献   

20.
Glial cells are the most abundant cells in the human brain and have long been considered as passive supporting cells for neurons. In contrast to the extensive studies on various neuronal functions in the nervous system, we still have limited knowledge about glial cells. Recently a number of pioneering studies have provided convincing evidence that glia play active roles in development and function of the central nervous system. This review discusses recent advances in our understanding of the molecular mechanisms underlying glial cell differentiation. We then highlight some of the novel findings about glial function, i.e. the role of glia in synaptogenesis and the intricate relationship between astrocytes and adult neural stem cells. Finally, we summarize the emerging studies that implicate abnormalities in the formation or maintenance of glia leading to severe brain diseases, such as Alexander disease, glioblastoma and multiple sclerosis, and potential therapeutic strategies to tackle these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号