首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of arsenite on the reaction of reduced xanthine oxidase with oxygen are determined. The kinetics of the reaction monitoring the return of enzyme absorbance are investigated as are the kinetics and stoichiometries of peroxide and superoxide formation. Although some of the effects of arsenite are qualitatively consistent with expectations based on the known perturbation of the molybdenum midpoint potentials by arsenite, several results cannot be so easily explained. Specifically, arsenite introduces a very rapid phase (kobs = 110 s-1 at 125 microM oxygen) to the oxidative half-reaction which is not observed with the native enzyme. Arsenite also diminishes the amount of superoxide produced and eliminates one-electron reduced enzyme as a detectable kinetic intermediate in the reoxidation pathway. These differences appear to result from the ability of arsenite to greatly enhance the oxygen- and/or superoxide-reactivity of the reduced molybdenum center. This is reflected in the observation that reduced forms of arsenite-complexed xanthine oxidase lacking functional FAD (iodoacetamide-alkylated enzyme and deflavo enzyme) react relatively rapidly with oxygen whereas these reactions are quite slow in the absence of arsenite.  相似文献   

2.
Adrenodoxin reductase, the flavoprotein moiety of the adrenal cortex mitochondrial steroid hydroxylating system, participates in adrenodoxin-dependent cytochrome c and adrenodoxin-independent ferricyanide reduction, with NADPH as electron donor for both of these 1-electron reductions. For ferricyanide reduction, adrenodoxin reductase cycles between oxidized and 2-electron-reduced forms, reoxidation proceeding via the neutral flavin (FAD) semiquinone form (Fig. 9). Addition of adrenodoxin has no effect upon the kinetic parameters of flavoprotein-catalyzed ferricyanide reduction. For cytochrome c reduction, the adrenodoxin reductase-adrenodoxin 1:1 complex has been shown to be the catalytically active species (Lambeth, J. D., McCaslin, D. R., and Kamin, H. (1976) J. Biol. Chem. 251, 7545-7550). Present studies, using stopped flow techniques, have shown that the 2-electron-reduced form of the complex (produced by reaction with 1 eq of NADPH) reacts rapidly with 1 eq of cytochrome c (k approximately or equal to 4.6 s-1), but only slowly with a second cytochrome c (k = 0.1 to 0.3 s-1). However, when a second NADPH is included, two more equivalents of cytochrome are reduced rapidly. Thus, the adrenodoxin reductase-adrenodoxin complex appears to cycle between 1- and 3-electron reduced states, via an intermediate 2-electron-containing form produced by reoxidation by cytochrome (Fig. 10). For ferricyanide reduction by adrenodoxin reductase, the fully reduced and semiquinone forms of flavin each transfer 1 electron at oxidation-reduction potentials which differ by approximately 130 mV. However, adrenodoxin in a complex with adrenodoxin reductase allows electrons of constant potential to be delivered from flavin to cytochrome c via the iron sulfur center...  相似文献   

3.
The reaction of 6-electron reduced chicken liver xanthine dehydrogenase (XDH) with molecular oxygen was studied using both stopped flow and steady-state turnover techniques at pH 7.8, 4 degrees C. Oxidation of fully reduced XDH proceeded via four phases, three of which were detected with the stopped flow spectrophotometer. The fastest phase was second order in oxygen (1900 M-1 s-1), resulted in the appearance of flavin semiquinone and yielded no superoxide. The next phase was also second order in oxygen (260 M-1 s-1), involved the loss of flavin semiquinone and yielded, on average, 1 mol of superoxide/mol of XDH oxidized. The last 2 electron equivalents were located in the iron-sulfur centers. They were released one equivalent at a time in the form of superoxide. Steady-state kinetics were found to be critically dependent on temperature and oxygen concentration. When these factors were carefully controlled, both the xanthine-oxygen and NADH-oxygen reductase reactions gave linear Lineweaver-Burk plots. The xanthine-oxygen data yielded a turnover number of 43 min-1, which was 42% of that for xanthine-NAD turnover. During turnover, with xanthine and O2, 40-44% of the electron equivalents introduced by xanthine appeared as superoxide. Reduced pyridine nucleotides, NAD and 3-aminopyridine adenine dinucleotide, dramatically reduced the formation of superoxide at levels which did not seriously inhibit oxygen reactivity.  相似文献   

4.
Typically, simple flavoprotein oxidases couple the oxidation of their substrates with the formation of hydrogen peroxide without release of significant levels of the superoxide ion. However, two evolutionarily related single-domain sulfhydryl oxidases (Erv2p; a yeast endoplasmic reticulum resident protein and augmenter of liver regeneration, ALR, an enzyme predominantly found in the mitochondrial intermembrane) release up to ~30% of the oxygen they reduce as the superoxide ion. Both enzymes oxidize dithiol substrates via a redox-active disulfide adjacent to the flavin cofactor within the helix-rich Erv domain. Subsequent reduction of the flavin is followed by transfer of reducing equivalents to molecular oxygen. Superoxide release was initially detected using tris(3-hydroxypropyl)phosphine (THP) as an alternative reducing substrate to dithiothreitol (DTT). THP, and other phosphines, showed anomalously high turnover numbers with Erv2p and ALR in the oxygen electrode, but oxygen consumption was drastically suppressed upon the addition of superoxide dismutase. The superoxide ion initiates a radical chain reaction promoting the aerobic oxidation of phosphines with the formation of hydrogen peroxide. Use of a known flux of superoxide generated by the xanthine/xanthine oxidase system showed that one superoxide ion stimulates the reduction of 27 and 4.5 molecules of oxygen using THP and tris(2-carboxyethyl)phosphine (TCEP), respectively. This superoxide-dependent amplification of oxygen consumption by phosphines provides a new kinetic method for the detection of superoxide. Superoxide release was also observed by a standard chemiluminescence method using a luciferin analogue (MCLA) when 2 mM DTT was employed as a substrate of Erv2p and ALR. The percentage of superoxide released from Erv2p increased to ~65% when monomeric mutants of the normally homodimeric enzyme were used. In contrast, monomeric multidomain quiescin sulfhydryl oxidase enzymes that also contain an Erv FAD-binding fold release only 1-5% of their total reduced oxygen species as the superoxide ion. Aspects of the mechanism and possible physiological significance of superoxide release from these Erv-domain flavoproteins are discussed.  相似文献   

5.
The kinetics of electron transfer within the molybdoflavoenzyme xanthine oxidase has been investigated using the technique of pulse radiolysis. Subsequent to one-electron reduction of native enzyme at 20 degrees C in 20 mM pyrophosphate buffer, pH 8.5, using the CO-.2 species as reductant, a spectral change is observed having a rate constant of approximately 290 s-1. From its wavelength dependence, this spectral change is assigned to the transfer of an electron from flavin semiquinone (formed on reaction with the CO2-. species) to one of the iron-sulfur centers of the enzyme in an intramolecular equilibration process. The value for this rate constant agrees well with the 330 s-1 observed in previous stopped-flow pH-jump experiments carried out at 25 degrees C (Hille, R., and Massey, V. (1986) J. Biol. Chem. 261, 1241-1247). Experimental results with fully reduced enzyme reacting with the radiolytically generated N.3 species also support the conclusion that the equilibration of reducing equivalents among the oxidation-reduction centers of xanthine oxidase is a rapid process. Evidence is also found that xanthine oxidase possesses an unusually reactive disulfide bond that is reduced rapidly by radiolytically generated radicals. The ramifications of the present results with regard to the interpretation of experiments involving chemically reactive radical species, generated either by photolysis or radiolysis, are discussed.  相似文献   

6.
Oxygen radical generation in the xanthine- and NADH-oxygen reductase reactions by xanthine oxidase, was demonstrated using the ESR spin trap 5,5'-dimethyl-1- pyrroline-N-oxide. No xanthine-dependent oxygen radical formation was observed when allopurinol-treated xanthine oxidase was used. The significant superoxide generation in the NADH-oxygen reductase reaction by the enzyme was increased by the addition of menadione and adriamycin. The NADH-menadione and -adriamycin reductase activities of xanthine oxidase were assessed in terms of NADH oxidation. From Lineweaver-Burk plots, the Km and Vmax of xanthine oxidase were estimated to be respectively 51 microM and 5.5 s-1 for menadione and 12 microM and 0.4 s-1 for adriamycin. Allopurinol-inactivated xanthine oxidase generates superoxide and OH.radicals in the presence of NADH and menadione or adriamycin to the same extent as the native enzyme. Adriamycin radicals were observed when the reactions were carried out under an atmosphere of argon. The effects of superoxide dismutase and catalase revealed that OH.radicals were mainly generated through the direct reaction of H2O2 with semiquinoid forms of menadione and adriamycin.  相似文献   

7.
Xanthine oxidase has been hypothesized to be an important source of biological free radical generation. The enzyme generates the superoxide radical, .O2- and has been widely applied as a .O2- generating system; however, the enzyme may also generate other forms of reduced oxygen. We have applied electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to characterize the different radical species generated by xanthine oxidase along with the mechanisms of their generation. Upon reaction of xanthine with xanthine oxidase equilibrated with air, both DMPO-OOH and DMPO-OH radicals are observed. In the presence of ethanol or dimethyl sulfoxide, alpha-hydroxyethyl or methyl radicals are generated, respectively, indicating that significant DMPO-OH generation occurred directly from OH rather than simply from the breakdown of DMPO-OOH. Superoxide dismutase totally scavenged the DMPO-OOH signal but not the DMPO-OH signal suggesting that .O2- was not required for .OH generation. Catalase markedly decreased the DMPO-OH signal, while superoxide dismutase + catalase totally scavenged all radical generation. Thus, xanthine oxidase generates .OH via the reduction of O2 to H2O2, which in turn is reduced to .OH. In anaerobic preparations, the enzyme reduces H2O2 to .OH as evidenced by the appearance of a pure DMPO-OH signal. The presence of the flavin in the enzyme is required for both .O2- and .OH generation confirming that the flavin is the site of O2 reduction. The ratio of .O2- and .OH generation was affected by the relative concentrations of dissolved O2 and H2O2. Thus, xanthine oxidase can generate the highly reactive .OH radical as well as the less reactive .O2- radical. The direct production of .OH by xanthine oxidase in cells and tissues containing this enzyme could explain the presence of oxidative cellular damage which is not prevented by superoxide dismutase.  相似文献   

8.
The formation of reactive oxygen intermediates (ROI) during redox cycling of newly synthesized potential antitumor 2,5-bis (1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives has been studied by assaying the production of ROI (superoxide, hydroxyl radical, and hydrogen peroxide) by xanthine oxidase in the presence of BABQ derivatives. At low concentrations (< 10 microM) some BABQ derivatives turned out to inhibit the production of superoxide and hydroxyl radicals by xanthine oxidase, while the effect on the xanthine-oxidase-induced production of hydrogen peroxide was much less pronounced. Induction of DNA strand breaks by reactive oxygen species generated by xanthine oxidase was also inhibited by BABQ derivatives. The DNA damage was comparable to the amount of hydroxyl radicals produced. The inhibiting effect on hydroxyl radical production can be explained as a consequence of the lowered level of superoxide, which disrupts the Haber-Weiss reaction sequence. The inhibitory effect of BABQ derivatives on superoxide formation correlated with their one-electron reduction potentials: BABQ derivatives with a high reduction potential scavenge superoxide anion radicals produced by xanthine oxidase, leading to reduced BABQ species and production of hydrogen peroxide from reoxidation of reduced BABQ. This study, using a unique series of BABQ derivatives with an extended range of reduction potentials, demonstrates that the formation of superoxide and hydroxyl radicals by bioreductively activated antitumor quinones can in principle be uncoupled from alkylating activity.  相似文献   

9.
The reaction of xanthine and xanthine oxidase generates superoxide and hydrogen peroxide. In contrast to earlier works, recent spin trapping data (Kuppusamy, P., and Zweier, J.L. (1989) J. Biol. Chem. 264, 9880-9884) suggested that hydroxyl radical may also be a product of this reaction. Determining if hydroxyl radical results directly from the xanthine/xanthine oxidase reaction is important for 1) interpreting experimental data in which this reaction is used as a model of oxidant stress, and 2) understanding the pathogenesis of ischemia/reperfusion injury. Consequently, we evaluated the conditions required for hydroxyl radical generation during the oxidation of xanthine by xanthine oxidase. Following the addition of some, but not all, commercial preparations of xanthine oxidase to a mixture of xanthine, deferoxamine, and either 5,5-dimethyl-1-pyrroline-N-oxide or a combination of alpha-phenyl-N-tert-butyl-nitrone and dimethyl sulfoxide, hydroxyl radical-derived spin adducts were detected. With other preparations, no evidence of hydroxyl radical formation was noted. Xanthine oxidase preparations that generated hydroxyl radical had greater iron associated with them, suggesting that adventitious iron was a possible contributing factor. Consistent with this hypothesis, addition of H2O2, in the absence of xanthine, to "high iron" xanthine oxidase preparations generated hydroxyl radical. Substitution of a different iron chelator, diethylenetriaminepentaacetic acid for deferoxamine, or preincubation of high iron xanthine oxidase preparations with chelating resin, or overnight dialysis of the enzyme against deferoxamine decreased or eliminated hydroxyl radical generation without altering the rate of superoxide production. Therefore, hydroxyl radical does not appear to be a product of the oxidation of xanthine by xanthine oxidase. However, commercial xanthine oxidase preparations may contain adventitious iron bound to the enzyme, which can catalyze hydroxyl radical formation from hydrogen peroxide.  相似文献   

10.
Electron transfer in milk xanthine oxidase as studied by pulse radiolysis   总被引:1,自引:0,他引:1  
Electron transfer within milk xanthine oxidase has been examined by the technique of pulse radiolysis. Radiolytically generated N-methylnicotinamide radical or 5-deazalumiflavin radical has been used to rapidly and selectively introduce reducing equivalents into the enzyme so that subsequent equilibration among the four redox-active centers of the enzyme (a molybdenum center, two iron-sulfur centers, and FAD) could be monitored spectrophotometrically. Experiments have been performed at pH 6 and 8.5, and a comprehensive scheme describing electron equilibration within the enzyme at both pH values has been developed. All rate constants ascribed to equilibration between specific pairs of centers in the enzyme are found to be rapid relative to enzyme turnover under the same conditions. Electron equilibration between the molybdenum center and one of the iron-sulfur centers of the enzyme (tentatively assigned Fe/S I) is particularly rapid, with a pH-independent first-order rate constant of approximately 8.5 x 10(3) s-1. The results unambiguously demonstrate the role of the iron-sulfur centers of xanthine oxidase in mediating electron transfer between the molybdenum and flavin centers of the enzyme.  相似文献   

11.
An aldehyde oxidase, which oxidizes various aliphatic and aromatic aldehydes using O(2) as an electron acceptor, was purified from the cell-free extracts of Pseudomonas sp. KY 4690, a soil isolate, to an electrophoretically homogeneous state. The purified enzyme had a molecular mass of 132 kDa and consisted of three non-identical subunits with molecular masses of 88, 39, and 18 kDa. The absorption spectrum of the purified enzyme showed characteristics of an enzyme belonging to the xanthine oxidase family. The enzyme contained 0.89 mol of flavin adenine dinucleotide, 1.0 mol of molybdenum, 3.6 mol of acid-labile sulfur, and 0.90 mol of 5'-CMP per mol of enzyme protein, on the basis of its molecular mass of 145 kDa. Molecular oxygen served as the sole electron acceptor. These results suggest that aldehyde oxidase from Pseudomonas sp. KY 4690 is a new member of the xanthine oxidase family and might contain 1 mol of molybdenum-molybdpterin-cytosine dinucleotide, 1 mol of flavin adenine dinucleotide, and 2 mol of [2Fe-2S] clusters per mol of enzyme protein. The enzyme showed high reaction rates toward various aliphatic and aromatic aldehydes and high thermostability.  相似文献   

12.
Bovine milk xanthine oxidase was potently inhibited by 6-(bromomethyl)-9H-purine in a time-dependent process with O2 as the electron acceptor. If the enzyme were assayed with phenazene ethosulfate as an electron acceptor, 6-(bromomethyl)-9H-purine was not an inhibitor. The rate of formation of inhibited enzyme increased with increasing concentrations of 6-(halomethyl)-9H-purine, decreased with increasing concentrations of O2, and increased in the presence of xanthine. The inhibited enzyme regained activity nonactinically at pH 7 with a t1/2 of 31 h. The optical difference spectrum between native enzyme and inhibited enzyme suggested that the enzyme-bound FAD was modified. This conclusion was confirmed by demonstrating that activity was restored to the inhibited enzyme if the enzyme-bound flavin was removed by treatment with CaCl2 and the resulting apoenzyme was reconstituted with FAD. Aerobically, 6-(bromomethyl)-9H-purine was oxidized by the enzyme to a species having a UV spectrum consistent with hydroxylation of the purine ring to form a urate analogue. Anaerobically, the enzyme reduced 6-(bromomethyl)-9H-purine to 6-methylpurine with 1 mol of enzyme being completely inhibited after reduction of 23 mol of 6-(bromomethyl)-9H-purine. Thus, 6-(bromomethyl)-9H-purine was not only oxidized by xanthine oxidase but was also reduced by the enzyme in a reaction that partitioned between formation of 6-methylpurine and inhibition of the enzyme by modification of the enzyme-bound flavin. Similar results were found when 6-(chloromethyl)-9H-purine was the inhibitor.  相似文献   

13.
A comparative study using laser flash photolysis of the kinetics of reduction and intramolecular electron transfer among the redox centers of chicken liver xanthine dehydrogenase and of bovine milk xanthine oxidase is described. The photogenerated reductant, 5-deazariboflavin semiquinone, reacts with the dehydrogenase (presumably at the Mo center) in a second-order manner, with a rate constant (k = 6 x 10(7) M-1 s-1) similar to that observed with the oxidase [k = 3 x 10(7) M-1 s-1; Bhattacharyya et al. (1983) Biochemistry 22, 5270-5279]. In the case of the dehydrogenase, neutral FAD radical formation is found to occur by intramolecular electron transfer (kobs = 1600 s-1), presumably from the Mo center, whereas with the oxidase the flavin radical forms via a bimolecular process involving direct reduction by the deazaflavin semiquinone (k = 2 x 10(8) M-1 s-1). Biphasic rates of Fe/S center reduction are observed with both enzymes, which are due to intramolecular electron transfer (kobs approximately 100 s-1 and kobs = 8-11 s-1). Intramolecular oxidation of the FAD radical in each enzyme occurs with a rate constant comparable to that of the rapid phase of Fe/S center reduction. The methylviologen radical, generated by the reaction of the oxidized viologen with 5-deazariboflavin semiquinone, reacts with both the dehydrogenase and the oxidase in a second-order manner (k = 7 x 10(5) M-1 s-1 and 4 x 10(6) M-1 s-1, respectively). Alkylation of the FAD centers results in substantial alterations in the kinetics of the reaction of the viologen radical with the oxidase but not with the dehydrogenase. These results suggest that the viologen radical reacts directly with the FAD center in the oxidase but not in the dehydrogenase, as is the case with the deazaflavin radical. The data support the conclusion that the environments of the FAD centers differ in the two enzymes, which is in accord with other studies addressing this problem from a different perspective [Massey et al. (1989) J. Biol. Chem. 264, 10567-10573]. In contrast, the rate constants for intramolecular electron transfer among the Mo, FAD, and Fe/S centers in the two enzymes (where they can be determined) are quite similar.  相似文献   

14.
To clarify the roles of superoxide anion (O2.-) and methylene blue in the reductive activation of the heme protein indoleamine 2,3-dioxygenase, effects of xanthine oxidase-hypoxanthine used at various oxidase concentration levels as an O2.- source and an electron donor on the catalytic activity of the dioxygenase have been examined in the presence and absence of either methylene blue or superoxide dismutase using L- and D-tryptophan as substrates. In the absence of methylene blue, initial rates of the product N-formylkynurenine formation are enhanced in parallel with the xanthine oxidase level up to approximately 100 and approximately 50% of the apparent maximal activity (approximately 2 s-1) for L- and D-Trp, respectively. Superoxide dismutase effectively inhibits the reactions by 80-98% for both isomers. Additions of methylene blue (25 microM) help to maintain the linearity of the product formation that would be rapidly lost a few minutes after the start of the reaction without the dye, especially for L-Trp. Additions of methylene blue also enhance the activity to the maximal level for D-Trp. In the presence of methylene blue, the inhibitory effects of superoxide dismutase are considerably decreased with the increase in xanthine oxidase concentration, and at near maximal dioxygenase activity levels superoxide dismutase is totally without effect. In separate anaerobic experiments leuco-methylene blue, generated either by photoreduction or by ascorbate reduction, is shown to be able to reduce the ferric dioxygenase up to 25-40%. Substrate Trp and heme ligands (CO, n-butyl isocyanide) help to shift a ferric form----ferrous form equilibrium to the right. Thus, under aerobic conditions leuco-methylene blue might similarly be able to reduce the dioxygenase in the presence of an electron donor with the aid of substrate and O2. These results strongly suggest that indoleamine 2,3-dioxygenase can be activated through different pathways either by O2.- or by an electron donor-methylene blue system. For the latter case, the dye is acting as an electron mediator from the donor to the ferric dioxygenase.  相似文献   

15.
We have studied the time course of the absorption of bovine liver catalase after pulse radiolysis with oxygen saturation in the presence and absence of superoxide dismutase. In the absence of superoxide dismutase, catalase produced Compound I and another species. The formation of Compound I is due to the reaction of ferric catalase with hydrogen peroxide, which is generated by the disproportionation of the superoxide anion (O-2). The kinetic difference spectrum showed that the other species was neither Compound I nor II. In the presence of superoxide dismutase, the formation of this species was found to be inhibited, whereas that of Compound I was little affected. This suggests that this species is formed by the reaction of ferric catalase with O-2 and is probably the oxy form of this enzyme (Compound III). The rate constant for the reaction of O-2 and ferric catalase increased with a decrease in pH (cf. 4.5 X 10(4) M-1 s-1 at pH 9 and 4.6 X 10(6) M-1 s-1 at pH 5.). The pH dependence of the rate constant can be explained by assuming that HO2 reacts with this enzyme more rapidly than O-2.  相似文献   

16.
In a recent publication [(1987) FEBS Lett. 210, 195-198] the authors claim the use of cytochrome c to detect superoxide anion underestimates the real rate of superoxide anion formation on the basis that: (i) the rate of uric acid formation by xanthine oxidase is about 4-fold faster than the rate of cytochrome c reduction and (ii) hydrogen peroxide formed upon dismutation of the superoxide anion generated by xanthine oxidase is capable of reoxidizing ferrocytochrome c. That paper may have been misleading for readers not very familiar with the field of oxygen radicals, since both assumptions are, in fact, incorrect. In this report we demonstrate that the build up in concentration of H2O2 during most reactions in which superoxide anion is being produced is not enough to affect the rate of cytochrome c reduction. Our results suggest that the authors may have been misled by an artifact due to exposure of the samples containing H2O2 to UV light, which generates hydroxyl radicals by photolysis.  相似文献   

17.
Tyrosinase isolated from cultured human melanoma cells was studied for tyrosine oxygenation activity. l -Tyrosine and d -tyrosine were used as substrates and dopa was measured with HPLC and electrochemical detection as the product of oxygenation. Incubations were performed in the presence or absence of dopamine as co-substrate. Oxygenation of l -tyrosine occurred only in the presence of dopamine as co-substrate. No oxygenation of d -tyrosine was found, and we conclude that human tyrosinase is characterised by exclusive specificity for the l -isomer of tyrosine in its oxygenase function. It has recently been suggested that superoxide anion is a preferential oxygen substrate for human tyrosinase. Incubations were therefore performed with l - and d -tyrosine, human tyrosinase, and xanthine/xanthine oxidase in the system, generating superoxide anion and hydrogen peroxide. Considerable formation of dopa was observed, but the quantity was the same irrespective of whether d -tyrosine or l -tyrosine was used as the substrate. Furthermore, formation of dopa occurred in a xanthine/xanthine oxidase system when bovine serum albumin (BSA) was substituted for tyrosinase. Our results provide no evidence that superoxide anion is an oxygen substrate for human tyrosinase. In the incubate containing xanthine/xanthine oxidase, catalase completely inhibited dopa formation, and superoxide dismutase and mannitol each strongly inhibited dopa formation. The results are compatible with hydroxyl radicals being responsible for the formation of dopa, since such radicals may be secondarily formed in the presence of superoxide anion and hydrogen peroxide.  相似文献   

18.
Millar TM 《FEBS letters》2004,562(1-3):129-133
One electron reductions of oxygen and nitrite by xanthine oxidase form peroxynitrite. The nitrite and oxygen reducing activities of xanthine oxidase are regulated by oxygen with K(oxygen) 26 and 100 microM and K(nitrite) 1.0 and 1.1 mM with xanthine and NADH as donor substrates. Optimal peroxynitrite formation occurs at 70 microM oxygen with purine substrates. Kinetic parameters: V(max) approximately 50 nmol/min/mg and K(m) of 22, 36 and 70 microM for hypoxanthine, pterin and nitrite respectively. Peroxynitrite generation is inhibited by allopurinol, superoxide dismutase and diphenylene iodonium. A role for this enzyme activity can be found in the antibacterial activity of milk and circulating xanthine oxidase activity.  相似文献   

19.
Xanthine oxidase is able to mobilize iron from ferritin. This mobilization can be blocked by 70% by superoxide dismutase, indicating that part of its action is mediated by superoxide (O2-). Uric acid induced the release of ferritin iron at concentrations normally found in serum. The O2(-)-independent mobilization of ferritin iron by xanthine oxidase cannot be attributed to uric acid, because uricase did not influence the O2(-)-independent part and acetaldehyde, a substrate for xanthine oxidase, also revealed an O2(-)-independent part, although no uric acid was produced. Presumably the amount of uric acid produced by xanthine oxidase and xanthine is insufficient to release a measurable amount of iron from ferritin. The liberation of iron from ferritin by xanthine oxidase has important consequences in ischaemia and inflammation. In these circumstances xanthine oxidase, formed from xanthine dehydrogenase, will stimulate the formation of a non-protein-bound iron pool, and the O2(-)-produced by xanthine oxidase, or granulocytes, will be converted by 'free' iron into much more highly toxic oxygen species such as hydroxyl radicals (OH.), exacerbating the tissue damage.  相似文献   

20.
The reaction of xanthine oxidase with 2-hydroxy-6-methylpurine (also called 2-oxo-6-methylpurine) has been studied under both anaerobic and aerobic conditions. Reaction of enzyme with substoichiometric concentrations of hydroxymethylpurine in aerobic 0.1 M 3-(cyclohexylamino)propanesulfonic acid, 0.1 N KCl, 0.3 mM EDTA, pH 10.0, exhibits two reaction intermediates detectable by UV-visible spectrophotometry. The rate constants for formation of the first intermediate, conversion of the first to the second, and the decay of the second to give oxidized enzyme are 18, 1.2, and 0.13 s-1, respectively. The difference spectra of these two intermediates relative to oxidized enzyme are characterized by absorbance maxima at 470 and 540 nm, respectively, with extinction changes (relative to oxidized enzyme) of approximately 410 M-1 cm-1. The 0.13 s-1 decay of the second intermediate agrees well with kcat of 0.11 s-1 determined under the same conditions. Based on a comparison of the kinetics of the reaction as monitored by UV-visible absorption and electron paramagnetic resonance spectrometry, it is concluded that these spectral intermediates arise from the molybdenum center of the enzyme in the MoIV and MoV valence states, respectively, the latter corresponding to the species exhibiting the "very rapid" MoV EPR signal known to be formed in the course of the reaction. This conclusion is supported by the results of experiments using cytochrome c reduction to follow the formation of superoxide production in the course of the aerobic reaction of xanthine oxidase with substoichiometric hydroxymethylpurine, which demonstrate unequivocally that the species exhibiting the very rapid EPR signal is formed by one-electron oxidation of a MoIV species rather than direct one-electron reduction of MoVI by substrate. No evidence is found for the formation of any of the MoV EPR signals designated "rapid" in the present studies, and it is concluded that this species is not a bona fide catalytic intermediate in the reductive half-reaction of xanthine oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号