首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Composition and deposition of throughfall in a flooded forest archipelago   总被引:6,自引:2,他引:4  
The sources of spatial and temporal variation and rates of nutrient deposition via throughfall were studied for 9 months in the Anavilhanas archipelago of the Negro River, Brazil. A total of 30 events was sampled individually for rain and throughfall chemistry in a 1-ha plot of flooded forest. Throughfall samples were collected in 40 collectors distributed in five parallel transects in the study plot, while rain was collected in 4 collectors in an adjacent channel. Volume-weighted mean (VWM) concentrations of solutes in rain were consistently lower than in throughfall, except for H+, NO 3 and NH 4 + . Ratios of VWM concentrations of rain to throughfall indicated that K+, followed by Mg2+ and PO 4 3– , were the most enhanced solutes as rain passed through the forest canopy. The deposition of solutes varied significantly among transects, except for Na+ and Ca2+, and was significantly correlated with maximum flooding depth, foliar nutrient content, soil fertility and canopy closure for most solutes. The concentrations of PO 4 3– and most major ions were higher in throughfall compared to those in rain due to canopy exchange and dry deposition. In contrast, NO 3 , NH 4 + and H+ were retained due to immobilization by leafy canopy and ion exchange processes. Solute inputs via throughfall (not including stemflow) to a floodplain lake (Lake Prato) of the archipelago accounted for 30 to 64% of the total for most solutes in the lake at high water, which indicates that throughfall is an important source of nutrients to the aquatic ecosystem of the Anavilhanas archipelago.  相似文献   

2.
Abstract Most experimental additions of nitrogen to forest ecosystems apply the N to the forest floor, bypassing important processes taking place in the canopy, including canopy retention of N and/or conversion of N from one form to another. To quantify these processes, we carried out a large-scale experiment and determined the fate of nitrogen applied directly to a mature coniferous forest canopy in central Maine (18–20 kg N ha−1 y−1 as NH4NO3 applied as a mist using a helicopter). In 2003 and 2004 we measured NO3 , NH4 +, and total dissolved N (TDN) in canopy throughfall (TF) and stemflow (SF) events after each of two growing season applications. Dissolved organic N (DON) was greater than 80% of the TDN under ambient inputs; however NO3 accounted for more than 50% of TF N in the treated plots, followed by NH4 + (35%) and DON (15%). Although NO3 was slightly more efficiently retained by the canopy under ambient inputs, canopy retention of NH4 +as a percent of inputs increased markedly under fertilization. Recovery of less than 30% of the fertilizer N in TF suggested that the forest canopy retained more than 70% of the applied N (>80% when corrected for N which bypassed tree surfaces at the time of fertilizer addition). Results from plots receiving 15N enriched NO3 and NH4 + confirmed bulk N estimations that more NO3 than NH4 + was washed from the canopy by wet deposition. The isotope data did not show evidence of canopy nitrification, as has been reported in other spruce forests receiving much higher N inputs. Conversions of fertilizer-N to DON were observed in TF for both 15NH4 + and 15NO3 additions, and occurred within days of the application. Subsequent rain events were not significantly enriched in 15N, suggesting that canopy DON formation was a rapid process related to recent N inputs to the canopy. We speculate that DON may arise from lichen and/or microbial N cycling rather than assimilation and re-release by tree tissues in this forest. Canopy retention of experimentally added N may meet and exceed calculated annual forest tree demand, although we do not know what fraction of retained N was actually physiologically assimilated by the plants. The observed retention and transformation of DIN within the canopy demonstrate that the fate and ecosystem consequences of N inputs from atmospheric deposition are likely influenced by forest canopy processes, which should be considered in N addition studies. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
We studied forest monitoring data collected at permanent plots in Italy over the period 2000–2009 to identify the possible impact of nitrogen (N) deposition on soil chemistry, tree nutrition and growth. Average N throughfall (N‐NO3+N‐NH4) ranged between 4 and 29 kg ha?1 yr?1, with Critical Loads (CLs) for nutrient N exceeded at several sites. Evidence is consistent in pointing out effects of N deposition on soil and tree nutrition: topsoil exchangeable base cations (BCE) and pH decreased with increasing N deposition, and foliar nutrient N ratios (especially N : P and N : K) increased. Comparison between bulk openfield and throughfall data suggested possible canopy uptake of N, levelling out for bulk deposition >4–6 kg ha?1 yr?1. Partial Least Square (PLS) regression revealed that ‐ although stand and meteorological variables explained the largest portion of variance in relative basal area increment (BAIrel 2000–2009) ‐ N‐related predictors (topsoil BCE, C : N, pH; foliar N‐ratios; N deposition) nearly always improved the BAIrel model in terms of variance explained (from 78.2 to 93.5%) and error (from 2.98 to 1.50%). N deposition was the strongest predictor even when stand, management and atmosphere‐related variables (meteorology and tropospheric ozone) were accounted for. The maximal annual response of BAIrel was estimated at 0.074–0.085% for every additional kgN. This corresponds to an annual maximal relative increase of 0.13–0.14% of carbon sequestered in the above‐ground woody biomass for every additional kgN, i.e. a median value of 159 kgC per kgN ha?1 yr?1 (range: 50–504 kgC per kgN, depending on the site). Positive growth response occurred also at sites where signals of possible, perhaps recent N saturation were detected. This may suggest a time lag for detrimental N effects, but also that, under continuous high N input, the reported positive growth response may be not sustainable in the long‐term.  相似文献   

4.
We developed and evaluated a model of the canopy of a tropical montane forest at Monteverde, Costa Rica, to estimate inorganic nitrogen (N) retention by epiphytes from atmospheric deposition. We first estimated net retention of inorganic N by samples of epiphytic bryophytes, epiphyte assemblages, vascular epiphyte foliage, and host tree foliage that we exposed to cloud water and precipitation solutions. Results were then scaled up to the ecosystem level using a multilayered model of the canopy derived from measurements of forest structure and epiphyte mass. The model was driven with hourly meteorological and event‐based atmospheric deposition data, and model predictions were evaluated against measurements of throughfall collected at the site. Model predictions were similar to field measurements for both event‐based and annual hydrologic and inorganic N fluxes in throughfall. Simulation of individual events indicated that epiphytic bryophytes and epiphyte assemblages retained 33–67 percent of the inorganic N deposited in cloud water and precipitation. On an annual basis, the model predicted that epiphytic components retained 3.4 kg N ha/yr, equivalent to 50 percent of the inorganic N in atmospheric deposition (6.8 kg N ha/yr). Our results indicate that epiphytic bryophytes play a major role in N retention and cycling in this canopy by transforming highly mobile inorganic N (ca. 50% of atmospheric deposition is NO?3) to less mobile (exchangeable NH+4) and recalcitrant forms in biomass and remaining litter and humus.  相似文献   

5.
Although the canopy can play an important role in forest nutrient cycles, canopy‐based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using 15N pool dilution techniques. Measurements took place in the field, in the wet and dry season, using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4+ transformations decreased with increasing elevation; gross rates of NO3? transformations did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient‐addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability. Long‐term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system.  相似文献   

6.
Little is known about how tropical forest canopies interact with atmospheric nitrogen deposition and how this affects the internal nutrient dynamics and the processing of external nutrient inputs. The objectives of this study therefore were (1) to investigate gross and net canopy nitrogen (N) fluxes (retention and leaching) and (2) the effect of canopy components on net canopy N retention. Tracers were applied on detached branches in a tropical wet lowland rainforest, Costa Rica. A novel 15N pool dilution method showed that gross canopy fluxes (retention and leaching) of NO3 ?, NH4 +, and dissolved organic nitrogen (DON) were remarkably higher than net throughfall fluxes. Gross fluxes of NH4 + and NO3 ? resulted in a negligible net flux whereas DON showed net uptake by the canopy. The highest quantity of 15N was recovered in epiphytic bryophytes (16.4%) although the largest biomass fraction was made up of leaves. The study demonstrates that tracer applications allow investigation of the dynamic and complex canopy exchange processes and that epiphytic communities play a major role in solute fluxes in tree canopies and therefore in the nutrient dynamics of tropical rain forests.  相似文献   

7.
The chemistry and nutrient inputs of wet deposition, and the N chemistry of throughfall, were characterized for a tallgrass prairie in north-central Kansas. Dominant ions in wetfall were NH 4 + , Ca2+, H+, NO 3 - , and SO 4 2- ; weighted mean pH was 4.79. Principal sources of ions appeared to be natural emissions and wind-blown soils. Concentrations of NO 3 - -N, NH 4 + -N, and organic N in wet deposition were 0.31, 0.30, and 0.17 mg/L, respectively, resulting in N inputs of 2.5, 2.5, and 1.4 kg · ha-1 · yr-1. Comparisons with bulk precipitation suggested that at least 50% of atmospheric N inputs were from dry deposition. Concentrations of NO 3 - -N, NH 4 + -N, and organic N in unburned prairie throughfall were 0.27, 0.28, and 1.28 mg/L, and in burned prairie throughfall were 0.33, 0.37, and 0.91 mg/L, respectively. The prairie canopy intercepted up to 48% of incident precipitation. Lower inorganic N and higher organic N concentrations in throughfall relative to wet deposition probably resulted from leaf uptake of N and immobilization by microbes associated with the standing dead plant materials of the prairie canopy. The removal of these materials by fire is important in maintaining N availability for tallgrass prairie. Much of the N immobilization appeared to have been of N that was supplied to the prairie canopy by dry deposition.  相似文献   

8.
The volumetric quantity and biogeochemical quality of throughfall and stemflow in forested ecosystems are influenced by biological characteristics as well environmental and storm meteorological conditions. Previous attempts at connecting forest water and nutrient cycles to storm characteristics have focused on individual meteorological variables, but we propose a unified approach by examining the storm system in its entirety. In this study, we use methods from synoptic climatology to distinguish sub-canopy biogeochemical fluxes between storm events to understand the response of forest ecosystems to daily weather patterns. For solute inputs tied to atmospheric deposition (NH4 +, NO3 ?, SO4 2?, Na+, Cl?), stagnant air masses resulted in high inputs in rainfall (273.42, 81.81, 52.30, 156.99, 128.70 μmol L?1), throughfall (355.05, 130.66, 83.24, 239.55, 261.32 μmol L?1), and stemflow (338.34, 182.75, 153.74, 125.75, 272.88 μmol L?1). For inputs tied to canopy exchange (DOC, K+, Ca2+, Mg2+), a clear distinction was observed between throughfall and stemflow pathways. The largest throughfall concentrations were in the Great Lakes Low (1794.80, 352.96, 72.75, 74.37 μmol L?1) while the largest stemflow concentrations were in the Weak Upper Trough (3681.78, 497.34, 82.36, 72.46 μmol L?1). Stemflow leaching is likely derived from a larger reservoir of leachable cations in the tree canopy than throughfall, with stemflow fluxes maximized during synoptic types with greater rainfall amounts and throughfall fluxes diluted. For flux-based enrichment ratios, water volume, storm magnitude, antecedent dry period, and seasonality were important factors, further illustrating the influence of synoptic characteristics on wash-off, leaching and, ultimately, dilution processes within the canopy.  相似文献   

9.
The elemental content of rainfall (bulk deposition), throughfall and stemflow was measured inPinus radiata D. Don andEucalyptus forests in Gippsland, Victoria. Accessions in rainfall (mg m–2 year–1) averaged: organic-C 551, NO3 -N 96, NH4 +-N 62, total-N 303, K+ 382, Na+ 2250, Ca2+ 1170, and Mg2+ 678. The mean pH of rainfall was 5.9. Concentrations of all elements were greater in throughfall than in rainfall, and generally greater in stemflow than in throughfall. However, pH of pine throughfall was higher than that of rainfall, and pH of eucalypt throughfall was lower than that of rainfall. There was a net efflux of inorganic-N from pine crowns to rainfall, whilst in eucalypts there was generally net sorption of inorganic-N from rainfall. In both species organic-N was leached from the crowns and the net efflux of total-N from eucalypt crowns (50 mg m–2 year–1) averaged one-quarter of that in pines. Increases in the organic-C content of throughfall relative to rainfall in eucalypts were two to four times those in pines. Increases in the content of other elements in throughfall were comparable in pines and eucalypts and within the ranges K+ 615–1360, Na+ 480–-1840, Ca2+ 123–780 and Mg2+ 253–993 mg m–2 year–1. However, enrichment of Ca2+ may have been due to dust trapped in the canopies. Stemflow contributed significantly to the total amounts of elements reaching the forest floor in water.  相似文献   

10.
We studied five 20-m transects onthe lower slope under tropical lower montanerain forest at 1900–2200 m above sea level. We collectedsamples of soil and of weekly rainfall,throughfall, litter leachate, and stream waterbetween 14 March 1998 and 30 April 1999 anddetermined the concentrations of Al, totalorganic C (TOC), Ca, Cl, Cu, K, Mg, Mn,NH4 +-N, NO3 -N, total N (TN), Na, P, S, and Zn. The soils were shallowInceptisols; pH ranged 4.4–6.3 in the Ohorizons and 3.9–5.3 in the A horizons, totalCa (6.3–19.3 mg kg–1) and Mgconcentrations (1.4–5.4) in the O horizon weresignificantly different between the transects.Annual rainfall was 2193 mm; throughfall variedbetween 43 and 91% of rainfall, cloud waterinputs were 3.3 mm a–1 except forone transect (203). The volume-weighted mean pHwas 5.3 in rainfall and 6.1–6.7 in throughfall.The median of the pH of litter leachate andstream water was 4.8–6.8 and 6.8, respectively.The concentrations of Ca and Mg in litterleachate and throughfall correlatedsignificantly with those in the soil (r =0.76–0.95). Element concentrations inthroughfall were larger than in rainfallbecause of leaching from the leaves (Al, TOC,Ca, K, Mg), particulate dry deposition (TOC,Cu, Cl, NH4 +-N), and gaseousdry deposition (NO3 -N, total N, S).Net throughfall (= throughfall-rainfalldeposition) was positive for most elementsexcept for Mn, Na, and Zn. High-flow eventswere associated with elevated Al, TOC, Cu, Mn,and Zn concentrations.  相似文献   

11.
Prolonged dry periods, and increasingly the generation of smoke and dust in partially-deforested regions, can influence the chemistry of rainfall and throughfall in moist tropical forests. We investigated rainfall and throughfall chemistry in a palm-rich open tropical rainforest in the southwestern Brazilian Amazon state of Rondônia, where precipitation averages 2300 mm year?1 with a marked seasonal pattern, and where the fragmentation of remaining forest is severe. Covering the transition from dry to wet season (TDWS) and the wet season (WS) of 2004–2005, we sampled 42 rainfall events on event basis as well as 35 events on a within-event basis, and measured concentrations of DOC, Na+, K+, Ca2+, Mg2+, NH 4 + , Cl?, SO 4 2? , NO 3 ? and pH in rainfall and throughfall. We found strong evidence of both seasonal and within-event solute rainfall concentration dynamics. Seasonal volume-weighted mean (VWMS) concentrations in rainfall of DOC, K+, Ca2+, Mg2+, NH 4 + , SO 4 2? and NO 3 ? were significantly higher in the TDWS than the WS, while VWMS concentrations in throughfall were significantly higher for all solutes except DOC. Patterns were generally similar within rain events, with solute concentrations declining sharply during the first few millimeters of rainfall. Rainfall and throughfall chemistry dynamics appeared to be strongly influenced by forest and pasture burning and a regional atmosphere rich in aerosols at the end of the dry season. These seasonal and within-event patterns of rainfall and throughfall chemistry were stronger than those recorded in central Amazônia, where the dry season is less pronounced and where regional deforestation is less severe. Fragmentation and fire in Rondônia now appear to be altering the patterns in which solutes are delivered to remaining moist tropical forests.  相似文献   

12.
The chemical composition of rainwater is altered upon its passage through tree canopies. In order to investigate how rainwater chemistry is affected by canopy-dependent processes in characteristic forest types of Northwest German sandy lowland regions – oak–birch-forests, Betula pubescens Ehrh. swamp forests, and stands of Pinus sylvestris L. – comparative studies on the chemical composition of throughfall were carried out at seven forest sites, situated in close proximity within a nature reserve. Additionally, rainwater was sampled at three heathland sites for analysis of open-field precipitation and at three sites along an oak–birch-forest edge. Throughfall concentrations of most of the parameters analysed were significantly higher than open-field concentrations, especially with regard to electric conductivity, NH4-N, K+, and KMnO4-index. Ion concentrations in throughfall were the lowest in a 10-year-old stand of Betula pendula Roth. and Pinus sylvestris and in a Betula pubescens swamp forest and were highest beneath a stand of Pinus sylvestris. Except for Na+, Cl, and NO3, ion concentrations in both throughfall and open-field precipitation increased during the growing season (May–October). In throughfall, Ca2+, Mg2+, K+, and Mn2+ were strongly correlated. Enrichment ratios between throughfall and open-field deposition varied among sites and elements and were the highest for K‰+, Mg2‰+, and Mn2‰+. Estimates of canopy leaching indicated high leaching rates of K‰+ and Mn2‰+ and moderate leaching of Mg2‰+. The contribution of foliar leaching to throughfall deposition was higher at the deciduous than at the coniferous stands.  相似文献   

13.
This paper presents a model of water flux and throughfall concentrations of K+ and NH 4 + in a subalpine balsam fir forest. The model is based on a multi-layer submodel of hydrologic flow. Cloud water deposition and evaporation are incorporated as separate submodels. Chemical exchange is parameterized with diffusion resistances and internal foliar concentrations determined from leaching experiments on isolated canopy components. The model is tested against within-storm throughfall measurements and found to agree reasonably well in most instances. Some specific departures from observed data are noted, of which some can be explained. Differences between observed and modeled concentrations of K+ early in the storm events suggest that pre-storm conditions, which were not modeled, are important in controlling the chemical exchange.Responses of throughfall chemistry to changes in rain rate, rain concentration, and stand surface area index (SAI) were investigated by simulation with the model. Increasing rain rates increased leaching of K+ and uptake of NH 4 + . Increasing concentrations of K+ in rain decreased slightly the amount of K+ leached, but increasing concentration of NH 4 + in rain increased NH 4 + uptake proportionately. Increasing canopy SAI increased the leaching of K+ and the uptake of NH 4 + , with the pattern of the increase dependent on rain rate.  相似文献   

14.
陕北黄土高原柠条灌丛穿透雨特征与影响因素   总被引:2,自引:0,他引:2  
穿透雨是降雨再分配的主要组分,对干旱半干旱区的土壤水分补给和植被生长具有关键作用。灌丛穿透雨的影响机制特别是植被特征对穿透雨的影响需要进一步的定量研究,且目前对穿透雨空间异质性与聚集效应的研究相对较少。以陕北黄土高原典型灌丛—柠条为研究对象,于2016年对六道沟小流域柠条冠层下8个方位的穿透雨以及降雨和植被因子进行系统观测,分析穿透雨量、穿透雨率、穿透雨空间变异和聚集效应的变化特征,辨识影响穿透雨的主要降雨和植被因子,并建立相应的定量关系。结果表明:次降雨下柠条的穿透雨量、穿透雨率和空间变异系数平均值分别为11.88 mm、75.71%和21.80%。穿透雨量主要由降雨量决定,随降雨量增加而线性增加(R~2=0.99)。穿透雨率和空间变异系数主要受降雨量和降雨强度影响,穿透雨率随降雨量和I_30增加而呈对数增加(R~2=0.71和0.54),渐进值约为95%,而穿透雨空间变异系数则随降雨量和I_30增加而呈幂函数递减(R~2=0.71和0.60),稳定值约为10%。冠层厚度和枝倾角是影响穿透雨的主要植被因子,并分别呈显著的线性负相关和正相关(P0.05)。柠条穿透雨具有一定的聚集效应,平均发生频率为8.53%,且聚集效应在大雨量、高雨强和长历时降雨事件中更加明显。  相似文献   

15.
The foliar stable N isotope ratio (δ15N) can provide integrated information on ecosystem N cycling. Here we present the δ15N of plant and soil in four remote typical tropical rainforests (one primary and three secondary) of southern China. We aimed to examine if (1) foliar δ15N in the study forests is negative, as observed in other tropical and subtropical sites in eastern Asia; (2) variation in δ15N among different species is smaller compared to that in many N-limited temperate and boreal ecosystems; and (3) the primary forest is more N rich than the younger secondary forests and therefore is more 15N enriched. Our results show that foliar δ15N ranged from ?5.1 to 1.3 ‰ for 39 collected plant species with different growth strategies and mycorrhizal types, and that for 35 species it was negative. Soil NO3 ? had low δ15N (?11.4 to ?3.2 ‰) and plant NO3 ? uptake could not explain the negative foliar δ15N values (NH4 + was dominant in the soil inorganic-N fraction). We suggest that negative values might be caused by isotope fractionation during soil NH4 + uptake and mycorrhizal N transfer, and by direct uptake of atmospheric NH3/NH4 +. The variation in foliar δ15N among species (by about 6 ‰) was smaller than in many N-limited ecosystems, which is typically about or over 10 ‰. The primary forest had a larger N capital in plants than the secondary forests. Foliar δ15N and the enrichment factor (foliar δ15N minus soil δ15N) were higher in the primary forest than in the secondary forests, albeit differences were small, while there was no consistent pattern in soil δ15N between primary and secondary forests.  相似文献   

16.
Converting deciduous forests to coniferous plantations and vice versa causes environmental changes, but till now insight into the overall effect is lacking. This review, based on 38 case studies, aims to find out how coniferous and deciduous forests differ in terms of throughfall (+stemflow) deposition and seepage flux to groundwater. From the comparison of coniferous and deciduous stands at comparable sites, it can be inferred that deciduous forests receive less N and S via throughfall (+stemflow) deposition on the forest floor. In regions with relatively low open field deposition of atmospheric N (<10 kg N ha−1 year−1), lower NH4+ mean throughfall (+stemflow) deposition was, however, reported under conifers compared to deciduous forest, while in regions with high atmospheric N pollution (>10 kg N ha−1 year−1), the opposite could be concluded. The higher the open field deposition of NH4+, the bigger the difference between the coniferous and deciduous throughfall (+stemflow) deposition. Furthermore, it can be concluded that canopy exchange of K+, Ca2+ and Mg2+ is on average higher in deciduous stands. The significantly higher stand deposition flux of N and S in coniferous forests is reflected in a higher soil seepage flux of NO3, SO42−, K+, Ca2+, Mg2+ and Al(III). Considering a subset of papers for which all necessary data were available, a close relationship between throughfall (+stemflow) deposition and seepage was found for N, irrespective of the forest type, while this was not the case for S. This review shows that the higher input flux of N and S in coniferous forests clearly involves a higher seepage of NO3 and SO42− and accompanying cations K+, Ca2+, Mg2+ and Al(III) into the groundwater, making this forest type more vulnerable to acidification and eutrophication compared to the deciduous forest type.  相似文献   

17.
Atmospheric deposition is an important nutrient input to forests. The chemical composition of the rainfall is altered by the forest canopy due to interception and canopy exchange. Bulk deposition and stand deposition (throughfall plus stemflow) of Na+, Cl?, K+, Ca2+, Mg2+, PO 4 3? , SO 4 2? , H+, Mn2+, Al3+, Fe2+, NH 4 + , NO 3 ? and Norg were measured in nine deciduous forest plots with different tree species diversity in central Germany. Interception deposition and canopy exchange rates were calculated with a canopy budget model. The investigated forest plots were pure beech (Fagus sylvatica L.) plots, three-species plots (Fagus sylvatica, Tilia cordata Mill. or T. platyphyllos Scop. and Fraxinus excelsior L.) and five-species plots (Fagus sylvatica, T. cordata or T. platyphyllos, Fraxinus excelsior, Acer platanoides L., A. pseudoplatanus L. or A. campestre L. and Carpinus betulus L.). The interception deposition of all ions was highest in pure beech plots and was negatively related to the Shannon index. The stand deposition of K+, Ca2+, Mg2+ and PO 4 3? was higher in mixed species plots than in pure beech plots due to higher canopy leaching rates in the mixed species plots. The acid input to the canopy and to the soil was higher in pure beech plots than in mixed species plots. The high canopy leaching rates of Mn2+ in pure beech plots indicated differences in soil properties between the plot types. Indeed, pH, effective cation exchange capacity and base saturation were lower in pure beech plots. This may have contributed to the lower leaching rates of K+, Ca2+ and Mg2+ compared to the mixed species plots. However, foliar analyses indicated differences in the ion status among the tree species, which may additionally have influenced canopy exchange. In conclusion, the nutrient input to the soil resulting from deposition and canopy leaching was higher in mixed species plots than in pure beech plots, whereas the acid input was highest in pure beech plots.  相似文献   

18.
This study examines the role of tree canopies in processing atmospheric nitrogen (Ndep) for four forests in the United Kingdom subjected to different Ndep: Scots pine and beech stands under high Ndep (HN, 13–19 kg N ha?1 yr?1), compared to Scots pine and beech stands under low Ndep (LN, 9 kg N ha?1 yr?1). Changes of NO3‐N and NH4‐N concentrations in rainfall (RF) and throughfall (TF) together with a quadruple isotope approach, which combines δ18O, Δ17O and δ15N in NO3? and δ15N in NH4+, were used to assess N transformations by the canopies. Generally, HN sites showed higher NH4‐N and NO3‐N concentrations in RF compared to the LN sites. Similar values of δ15N‐NO3? and δ18O in RF suggested similar source of atmospheric NO3? (i.e. local traffic), while more positive values for δ15N‐NH4+ at HN compared to LN likely reflected the contribution of dry NHx deposition from intensive local farming. The isotopic signatures of the N‐forms changed after interacting with tree canopies. Indeed, 15N‐enriched NH4+ in TF compared to RF at all sites suggested that canopies played an important role in buffering dry Ndep also at the low Ndep site. Using two independent methods, based on δ18O and Δ17O, we quantified for the first time the proportion of NO3? in TF, which derived from nitrification occurring in tree canopies at the HN site. Specifically, for Scots pine, all the considered isotope approaches detected biological nitrification. By contrast for the beech, only using the mixing model with Δ17O, we were able to depict the occurrence of nitrification within canopies. Our study suggests that tree canopies play an active role in the N cycling within forest ecosystems. Processing of Ndep within canopies should not be neglected and needs further exploration, with the combination of multiple isotope tracers, with particular reference to Δ17O.  相似文献   

19.
The contribution of throughfall and stemflow as pathways for solute inputs into the forest floor in four mature forests in northwest Amazonia was investigated. Total solute inputs, resulting from the changes of atmospheric deposition after rainfall passes through the forest canopy, are presented in the form of throughfall and stemflow nutrient inputs and their possible sources are discussed. Throughfall is by far the most important solute input into the forest floor of the forests studied. On average, it represents about 98% of the total solute inputs. Although trends in solute enrichment varied among the forests, there is a general tendency in all ecosystems towards a distinct enrichment of SO4, K, Cl, NO3 and NH4 in throughfall and stemflow and a small increase of protons, Mn, orthoP and Fe. When comparing the net enrichment between the forests, the relative increase of solutes in throughfall and stemflow was higher in the flood plain and low terrace than in the high terrace and sedimentary plain forests. While highest values for total cation inputs were observed in the flood plain, the low terrace showed the highest value for total inorganic anions. The length of the antecedent dry period was the main factor affecting throughfall and stemflow composition, concentrations increasing with increasing length. A second, less important factor was the amount of throughfall and stemflow, which showed a poor and negative correlation with solute concentrations. The increased activity of frugivores in the canopy during fruiting periods seemed to lead to temporary increased solute concentrations in throughfall and stemflow as a result of the wash off of deposited faecal materials and detritus in the canopy. Leaching from leaves and wash off of exudes, of solutes deposited on the foliage after evaporation of intercepted rainfall and of dry deposited materials were all found to contribute to the concentration of solutes in the throughfall and stemflow. Gross rainfall enrichment after passing the forest canopy, mainly by nutrient leaching, is considerably lower than the amounts of nutrients released in litterfall implying a tight nutrient cycling and nutrient conserving mechanisms by forests studied.  相似文献   

20.
Knowledge of the fate of deposited N in the possibly N-limited, highly biodiverse north Andean forests is important because of the possible effects of N inputs on plant performance and species composition. We analyzed concentrations and fluxes of NO3 ??CN, NH4 +?CN and dissolved organic N (DON) in rainfall, throughfall, litter leachate, mineral soil solutions (0.15?C0.30 m depths) and stream water in a montane forest in Ecuador during four consecutive quarters and used the natural 15N abundance in NO3 ? during the passage of rain water through the ecosystem and bulk ??15N values in soil to detect N transformations. Depletion of 15N in NO3 ? and increased NO3 ??CN fluxes during the passage through the canopy and the organic layer indicated nitrification in these compartments. During leaching from the organic layer to mineral soil and stream, NO3 ? concentrations progressively decreased and were enriched in 15N but did not reach the ??15N values of solid phase organic matter (??15N = 5.6?C6.7??). This suggested a combination of nitrification and denitrification in mineral soil. In the wettest quarter, the ??15N value of NO3 ? in litter leachate was smaller (??15N = ?1.58??) than in the other quarters (??15N = ?9.38 ± SE 0.46??) probably because of reduced mineralization and associated fractionation against 15N. Nitrogen isotope fractionation of NO3 ? between litter leachate and stream water was smaller in the wettest period than in the other periods probably because of a higher rate of denitrification and continuous dilution by isotopically lighter NO3 ??CN from throughfall and nitrification in the organic layer during the wettest period. The stable N isotope composition of NO3 ? gave valuable indications of N transformations during the passage of water through the forest ecosystem from rainfall to the stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号